Source code for spreg.error_sp_het

'''
Spatial Error with Heteroskedasticity family of models
'''

__author__ = "Luc Anselin luc.anselin@asu.edu, \
        Pedro V. Amaral pedro.amaral@asu.edu, \
        Daniel Arribas-Bel darribas@asu.edu, \
        David C. Folch david.folch@asu.edu \
        Ran Wei rwei5@asu.edu"

import numpy as np
import numpy.linalg as la
from . import ols as OLS
from . import user_output as USER
from . import summary_output as SUMMARY
from . import twosls as TSLS
from . import utils as UTILS
from .utils import RegressionPropsY, spdot, set_endog, sphstack
from scipy import sparse as SP
from libpysal.weights.spatial_lag import lag_spatial

__all__ = ["GM_Error_Het", "GM_Endog_Error_Het", "GM_Combo_Het"]


class BaseGM_Error_Het(RegressionPropsY):

    """
    GMM method for a spatial error model with heteroskedasticity (note: no
    consistency checks, diagnostics or constant added); based on
    :cite:`Arraiz2010`, following :cite:`Anselin2011`.

    Parameters
    ----------
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, excluding the constant
    w            : Sparse matrix
                   Spatial weights sparse matrix 
    max_iter     : int
                   Maximum number of iterations of steps 2a and 2b from
                   :cite:`Arraiz2010`. Note: epsilon provides an additional
                   stop condition.
    epsilon      : float
                   Minimum change in lambda required to stop iterations of
                   steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides
                   an additional stop condition.
    step1c       : boolean
                   If True, then include Step 1c from :cite:`Arraiz2010`.

    Attributes
    ----------
    betas        : array
                   kx1 array of estimated coefficients
    u            : array
                   nx1 array of residuals
    e_filtered   : array
                   nx1 array of spatially filtered residuals
    predy        : array
                   nx1 array of predicted y values
    n            : integer
                   Number of observations
    k            : integer
                   Number of variables for which coefficients are estimated
                   (including the constant)
    y            : array
                   nx1 array for dependent variable
    x            : array
                   Two dimensional array with n rows and one column for each
                   independent (exogenous) variable, including the constant
    iter_stop    : string
                   Stop criterion reached during iteration of steps 2a and 2b
                   from :cite:`Arraiz2010`.
    iteration    : integer
                   Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`.
    mean_y       : float
                   Mean of dependent variable
    std_y        : float
                   Standard deviation of dependent variable
    vm           : array
                   Variance covariance matrix (kxk)
    xtx          : float
                   X'X

    Examples
    --------
    >>> import numpy as np
    >>> import libpysal
    >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')
    >>> y = np.array(db.by_col("HOVAL"))
    >>> y = np.reshape(y, (49,1))
    >>> X = []
    >>> X.append(db.by_col("INC"))
    >>> X.append(db.by_col("CRIME"))
    >>> X = np.array(X).T
    >>> X = np.hstack((np.ones(y.shape),X))
    >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))
    >>> w.transform = 'r'
    >>> reg = BaseGM_Error_Het(y, X, w.sparse, step1c=True)
    >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
    [[ 47.9963  11.479 ]
     [  0.7105   0.3681]
     [ -0.5588   0.1616]
     [  0.4118   0.168 ]]
    """

    def __init__(self, y, x, w,
                 max_iter=1, epsilon=0.00001, step1c=False):

        self.step1c = step1c
        # 1a. OLS --> \tilde{betas}
        ols = OLS.BaseOLS(y=y, x=x)
        self.x, self.y, self.n, self.k, self.xtx = ols.x, ols.y, ols.n, ols.k, ols.xtx
        wA1 = UTILS.get_A1_het(w)

        # 1b. GMM --> \tilde{\lambda1}
        moments = UTILS._moments2eqs(wA1, w, ols.u)
        lambda1 = UTILS.optim_moments(moments)

        if step1c:
            # 1c. GMM --> \tilde{\lambda2}
            sigma = get_psi_sigma(w, ols.u, lambda1)
            vc1 = get_vc_het(w, wA1, sigma)
            lambda2 = UTILS.optim_moments(moments, vc1)
        else:
            lambda2 = lambda1
        lambda_old = lambda2

        self.iteration, eps = 0, 1
        while self.iteration < max_iter and eps > epsilon:
            # 2a. reg -->\hat{betas}
            xs = UTILS.get_spFilter(w, lambda_old, self.x)
            ys = UTILS.get_spFilter(w, lambda_old, self.y)
            ols_s = OLS.BaseOLS(y=ys, x=xs)
            self.predy = spdot(self.x, ols_s.betas)
            self.u = self.y - self.predy

            # 2b. GMM --> \hat{\lambda}
            sigma_i = get_psi_sigma(w, self.u, lambda_old)
            vc_i = get_vc_het(w, wA1, sigma_i)
            moments_i = UTILS._moments2eqs(wA1, w, self.u)
            lambda3 = UTILS.optim_moments(moments_i, vc_i)
            eps = abs(lambda3 - lambda_old)
            lambda_old = lambda3
            self.iteration += 1

        self.iter_stop = UTILS.iter_msg(self.iteration, max_iter)

        sigma = get_psi_sigma(w, self.u, lambda3)
        vc3 = get_vc_het(w, wA1, sigma)
        self.vm = get_vm_het(moments_i[0], lambda3, self, w, vc3)
        self.betas = np.vstack((ols_s.betas, lambda3))
        self.e_filtered = self.u - lambda3 * w * self.u
        self._cache = {}


[docs]class GM_Error_Het(BaseGM_Error_Het): """ GMM method for a spatial error model with heteroskedasticity, with results and diagnostics; based on :cite:`Arraiz2010`, following :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant w : pysal W object Spatial weights object max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable pr2 : float Pseudo R squared (squared correlation between y and ypred) vm : array Variance covariance matrix (kxk) std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float xtx : float :math:`X'X` name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X.append(db.by_col("CRIME")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Error_Het(y, X, w=w, step1c=True, name_y='home value', name_x=['income', 'crime'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. >>> print reg.name_x ['CONSTANT', 'income', 'crime', 'lambda'] Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix: >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4) [[ 47.9963 11.479 ] [ 0.7105 0.3681] [ -0.5588 0.1616] [ 0.4118 0.168 ]] """
[docs] def __init__(self, y, x, w, max_iter=1, epsilon=0.00001, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) BaseGM_Error_Het.__init__( self, y, x_constant, w.sparse, max_iter=max_iter, step1c=step1c, epsilon=epsilon) self.title = "SPATIALLY WEIGHTED LEAST SQUARES (HET)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_x.append('lambda') self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Error_Het(reg=self, w=w, vm=vm)
class BaseGM_Endog_Error_Het(RegressionPropsY): """ GMM method for a spatial error model with heteroskedasticity and endogenous variables (note: no consistency checks, diagnostics or constant added); based on :cite:`Arraiz2010`, following :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : Sparse matrix Spatial weights sparse matrix max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. Attributes ---------- betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) hth : float :math:`H'H` Examples -------- >>> import numpy as np >>> import libpysal >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> X = np.hstack((np.ones(y.shape),X)) >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) >>> w.transform = 'r' >>> reg = BaseGM_Endog_Error_Het(y, X, yd, q, w=w.sparse, step1c=True) >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4) [[ 55.3971 28.8901] [ 0.4656 0.7731] [ -0.6704 0.468 ] [ 0.4114 0.1777]] """ def __init__(self, y, x, yend, q, w, max_iter=1, epsilon=0.00001, step1c=False, inv_method='power_exp'): self.step1c = step1c # 1a. reg --> \tilde{betas} tsls = TSLS.BaseTSLS(y=y, x=x, yend=yend, q=q) self.x, self.z, self.h, self.y = tsls.x, tsls.z, tsls.h, tsls.y self.yend, self.q, self.n, self.k, self.hth = tsls.yend, tsls.q, tsls.n, tsls.k, tsls.hth wA1 = UTILS.get_A1_het(w) # 1b. GMM --> \tilde{\lambda1} moments = UTILS._moments2eqs(wA1, w, tsls.u) lambda1 = UTILS.optim_moments(moments) if step1c: # 1c. GMM --> \tilde{\lambda2} self.u = tsls.u zs = UTILS.get_spFilter(w, lambda1, self.z) vc1 = get_vc_het_tsls(w, wA1, self, lambda1, tsls.pfora1a2, zs, inv_method, filt=False) lambda2 = UTILS.optim_moments(moments, vc1) else: lambda2 = lambda1 lambda_old = lambda2 self.iteration, eps = 0, 1 while self.iteration < max_iter and eps > epsilon: # 2a. reg -->\hat{betas} xs = UTILS.get_spFilter(w, lambda_old, self.x) ys = UTILS.get_spFilter(w, lambda_old, self.y) yend_s = UTILS.get_spFilter(w, lambda_old, self.yend) tsls_s = TSLS.BaseTSLS(ys, xs, yend_s, h=self.h) self.predy = spdot(self.z, tsls_s.betas) self.u = self.y - self.predy # 2b. GMM --> \hat{\lambda} vc2 = get_vc_het_tsls(w, wA1, self, lambda_old, tsls_s.pfora1a2, sphstack(xs, yend_s), inv_method) moments_i = UTILS._moments2eqs(wA1, w, self.u) lambda3 = UTILS.optim_moments(moments_i, vc2) eps = abs(lambda3 - lambda_old) lambda_old = lambda3 self.iteration += 1 self.iter_stop = UTILS.iter_msg(self.iteration, max_iter) zs = UTILS.get_spFilter(w, lambda3, self.z) P = get_P_hat(self, tsls.hthi, zs) vc3 = get_vc_het_tsls(w, wA1, self, lambda3, P, zs, inv_method, save_a1a2=True) self.vm = get_Omega_GS2SLS(w, lambda3, self, moments_i[0], vc3, P) self.betas = np.vstack((tsls_s.betas, lambda3)) self.e_filtered = self.u - lambda3 * w * self.u self._cache = {}
[docs]class GM_Endog_Error_Het(BaseGM_Endog_Error_Het): """ GMM method for a spatial error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on :cite:`Arraiz2010`, following :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used hth : float :math:`H'H` Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x). >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'. >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Endog_Error_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix: >>> print reg.name_z ['CONSTANT', 'inc', 'crime', 'lambda'] >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4) [[ 55.3971 28.8901] [ 0.4656 0.7731] [ -0.6704 0.468 ] [ 0.4114 0.1777]] """
[docs] def __init__(self, y, x, yend, q, w, max_iter=1, epsilon=0.00001, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) BaseGM_Endog_Error_Het.__init__(self, y=y, x=x_constant, yend=yend, q=q, w=w.sparse, max_iter=max_iter, step1c=step1c, epsilon=epsilon, inv_method=inv_method) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') # listing lambda last self.name_q = USER.set_name_q(name_q, q) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Endog_Error_Het(reg=self, w=w, vm=vm)
class BaseGM_Combo_Het(BaseGM_Endog_Error_Het): """ GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables (note: no consistency checks, diagnostics or constant added); based on :cite:`Arraiz2010`, following :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : Sparse matrix Spatial weights sparse matrix w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. Attributes ---------- betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals predy : array nx1 array of predicted y values n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) hth : float :math:`H'H` Examples -------- >>> import numpy as np >>> import libpysal >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) >>> w.transform = 'r' >>> w_lags = 1 >>> yd2, q2 = spreg.utils.set_endog(y, X, w, None, None, w_lags, True) >>> X = np.hstack((np.ones(y.shape),X)) Example only with spatial lag >>> reg = BaseGM_Combo_Het(y, X, yend=yd2, q=q2, w=w.sparse, step1c=True) >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4) [[ 9.9753 14.1435] [ 1.5742 0.374 ] [ 0.1535 0.3978] [ 0.2103 0.3924]] Example with both spatial lag and other endogenous variables >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T >>> yd2, q2 = spreg.utils.set_endog(y, X, w, yd, q, w_lags, True) >>> X = np.hstack((np.ones(y.shape),X)) >>> reg = BaseGM_Combo_Het(y, X, yd2, q2, w=w.sparse, step1c=True) >>> betas = np.array([['CONSTANT'],['inc'],['crime'],['lag_hoval'],['lambda']]) >>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5))) [['CONSTANT' '113.91292' '64.38815'] ['inc' '-0.34822' '1.18219'] ['crime' '-1.35656' '0.72482'] ['lag_hoval' '-0.57657' '0.75856'] ['lambda' '0.65608' '0.15719']] """ def __init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=0.00001, step1c=False, inv_method='power_exp'): BaseGM_Endog_Error_Het.__init__( self, y=y, x=x, w=w, yend=yend, q=q, max_iter=max_iter, step1c=step1c, epsilon=epsilon, inv_method=inv_method)
[docs]class GM_Combo_Het(BaseGM_Combo_Het): """ GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on :cite:`Arraiz2010`, following :cite:`Anselin2011`. Parameters ---------- y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x) w : pysal W object Spatial weights object (always needed) w_lags : integer Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on. lag_q : boolean If True, then include spatial lags of the additional instruments (q). max_iter : int Maximum number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: epsilon provides an additional stop condition. epsilon : float Minimum change in lambda required to stop iterations of steps 2a and 2b from :cite:`Arraiz2010`. Note: max_iter provides an additional stop condition. step1c : boolean If True, then include Step 1c from :cite:`Arraiz2010`. inv_method : string If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n. vm : boolean If True, include variance-covariance matrix in summary results name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_q : list of strings Names of instruments for use in output name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output Attributes ---------- summary : string Summary of regression results and diagnostics (note: use in conjunction with the print command) betas : array kx1 array of estimated coefficients u : array nx1 array of residuals e_filtered : array nx1 array of spatially filtered residuals e_pred : array nx1 array of residuals (using reduced form) predy : array nx1 array of predicted y values predy_e : array nx1 array of predicted y values (using reduced form) n : integer Number of observations k : integer Number of variables for which coefficients are estimated (including the constant) y : array nx1 array for dependent variable x : array Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant yend : array Two dimensional array with n rows and one column for each endogenous variable q : array Two dimensional array with n rows and one column for each external exogenous variable used as instruments z : array nxk array of variables (combination of x and yend) h : array nxl array of instruments (combination of x and q) iter_stop : string Stop criterion reached during iteration of steps 2a and 2b from :cite:`Arraiz2010`. iteration : integer Number of iterations of steps 2a and 2b from :cite:`Arraiz2010`. mean_y : float Mean of dependent variable std_y : float Standard deviation of dependent variable vm : array Variance covariance matrix (kxk) pr2 : float Pseudo R squared (squared correlation between y and ypred) pr2_e : float Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) std_err : array 1xk array of standard errors of the betas z_stat : list of tuples z statistic; each tuple contains the pair (statistic, p-value), where each is a float name_y : string Name of dependent variable for use in output name_x : list of strings Names of independent variables for use in output name_yend : list of strings Names of endogenous variables for use in output name_z : list of strings Names of exogenous and endogenous variables for use in output name_q : list of strings Names of external instruments name_h : list of strings Names of all instruments used in ouput name_w : string Name of weights matrix for use in output name_ds : string Name of dataset for use in output title : string Name of the regression method used hth : float :math:`H'H` Examples -------- We first need to import the needed modules, namely numpy to convert the data we read into arrays that ``spreg`` understands and ``pysal`` to perform all the analysis. >>> import numpy as np >>> import libpysal Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method. >>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r') Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n, ) that other packages accept. >>> y = np.array(db.by_col("HOVAL")) >>> y = np.reshape(y, (49,1)) Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in. >>> X = [] >>> X.append(db.by_col("INC")) >>> X = np.array(X).T Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from ``columbus.shp``. >>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp")) Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way: >>> w.transform = 'r' The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. >>> reg = GM_Combo_Het(y, X, w=w, step1c=True, name_y='hoval', name_x=['income'], name_ds='columbus') Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from ``spreg.error_sp``, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix: >>> print reg.name_z ['CONSTANT', 'income', 'W_hoval', 'lambda'] >>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4) [[ 9.9753 14.1435] [ 1.5742 0.374 ] [ 0.1535 0.3978] [ 0.2103 0.3924]] This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables: >>> yd = [] >>> yd.append(db.by_col("CRIME")) >>> yd = np.array(yd).T >>> q = [] >>> q.append(db.by_col("DISCBD")) >>> q = np.array(q).T And then we can run and explore the model analogously to the previous combo: >>> reg = GM_Combo_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus') >>> print reg.name_z ['CONSTANT', 'inc', 'crime', 'W_hoval', 'lambda'] >>> print np.round(reg.betas,4) [[ 113.9129] [ -0.3482] [ -1.3566] [ -0.5766] [ 0.6561]] """
[docs] def __init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=0.00001, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Combo_Het.__init__(self, y=y, x=x_constant, yend=yend2, q=q2, w=w.sparse, w_lags=w_lags, max_iter=max_iter, step1c=step1c, lag_q=lag_q, epsilon=epsilon, inv_method=inv_method) self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = UTILS.sp_att(w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho) UTILS.set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES (HET)" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') # listing lambda last self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo_Het(reg=self, w=w, vm=vm)
# Functions def get_psi_sigma(w, u, lamb): """ Computes the Sigma matrix needed to compute Psi Parameters ---------- w : Sparse matrix Spatial weights sparse matrix u : array nx1 vector of residuals lamb : float Lambda """ e = (u - lamb * (w * u)) ** 2 E = SP.dia_matrix((e.flat, 0), shape=(w.shape[0], w.shape[0])) return E.tocsr() def get_vc_het(w, wA1, E): """ Computes the VC matrix Psi based on lambda as in Arraiz et al :cite:`Arraiz2010`: ..math:: \tilde{Psi} = \left(\begin{array}{c c} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \\ \end{array} \right) NOTE: psi12=psi21 ... Parameters ---------- w : Sparse matrix Spatial weights sparse matrix E : sparse matrix Sigma Returns ------- Psi : array 2x2 array with estimator of the variance-covariance matrix """ aPatE = 2 * wA1 * E wPwtE = (w + w.T) * E psi11 = aPatE * aPatE psi12 = aPatE * wPwtE psi22 = wPwtE * wPwtE psi = list(map(np.sum, [psi11.diagonal(), psi12.diagonal(), psi22.diagonal()])) return np.array([[psi[0], psi[1]], [psi[1], psi[2]]]) / (2. * w.shape[0]) def get_vm_het(G, lamb, reg, w, psi): """ Computes the variance-covariance matrix Omega as in Arraiz et al :cite:`Arraiz2010`: ... Parameters ---------- G : array G from moments equations lamb : float Final lambda from spHetErr estimation reg : regression object output instance from a regression model u : array nx1 vector of residuals w : Sparse matrix Spatial weights sparse matrix psi : array 2x2 array with the variance-covariance matrix of the moment equations Returns ------- vm : array (k+1)x(k+1) array with the variance-covariance matrix of the parameters """ J = np.dot(G, np.array([[1], [2 * lamb]])) Zs = UTILS.get_spFilter(w, lamb, reg.x) ZstEZs = spdot((Zs.T * get_psi_sigma(w, reg.u, lamb)), Zs) ZsZsi = la.inv(spdot(Zs.T, Zs)) omega11 = w.shape[0] * np.dot(np.dot(ZsZsi, ZstEZs), ZsZsi) omega22 = la.inv(np.dot(np.dot(J.T, la.inv(psi)), J)) zero = np.zeros((reg.k, 1), float) vm = np.vstack((np.hstack((omega11, zero)), np.hstack((zero.T, omega22)))) / \ w.shape[0] return vm def get_P_hat(reg, hthi, zf): """ P_hat from Appendix B, used for a1 a2, using filtered Z """ htzf = spdot(reg.h.T, zf) P1 = spdot(hthi, htzf) P2 = spdot(htzf.T, P1) P2i = la.inv(P2) return reg.n * np.dot(P1, P2i) def get_a1a2(w, wA1, reg, lambdapar, P, zs, inv_method, filt): """ Computes the a1 in psi assuming residuals come from original regression. :cite:`Anselin2011` Parameters ---------- w : Sparse matrix Spatial weights sparse matrix reg : TSLS Two stage least quare regression instance lambdapar : float Spatial autoregressive parameter Returns ------- [a1, a2] : list a1 and a2 are two nx1 array in psi equation """ us = UTILS.get_spFilter(w, lambdapar, reg.u) alpha1 = (-2.0 / w.shape[0]) * (np.dot(spdot(zs.T, wA1), us)) alpha2 = (-1.0 / w.shape[0]) * (np.dot(spdot(zs.T, (w + w.T)), us)) a1 = np.dot(spdot(reg.h, P), alpha1) a2 = np.dot(spdot(reg.h, P), alpha2) if not filt: a1 = UTILS.inverse_prod( w, a1, lambdapar, post_multiply=True, inv_method=inv_method).T a2 = UTILS.inverse_prod( w, a2, lambdapar, post_multiply=True, inv_method=inv_method).T return [a1, a2] def get_vc_het_tsls(w, wA1, reg, lambdapar, P, zs, inv_method, filt=True, save_a1a2=False): sigma = get_psi_sigma(w, reg.u, lambdapar) vc1 = get_vc_het(w, wA1, sigma) a1, a2 = get_a1a2(w, wA1, reg, lambdapar, P, zs, inv_method, filt) a1s = a1.T * sigma a2s = a2.T * sigma psi11 = float(np.dot(a1s, a1)) psi12 = float(np.dot(a1s, a2)) psi21 = float(np.dot(a2s, a1)) psi22 = float(np.dot(a2s, a2)) psi0 = np.array([[psi11, psi12], [psi21, psi22]]) / w.shape[0] if save_a1a2: psi = (vc1 + psi0, a1, a2) else: psi = vc1 + psi0 return psi def get_Omega_GS2SLS(w, lamb, reg, G, psi, P): """ Computes the variance-covariance matrix for GS2SLS: Parameters ---------- w : Sparse matrix Spatial weights sparse matrix lamb : float Spatial autoregressive parameter reg : GSTSLS Generalized Spatial two stage least quare regression instance G : array Moments psi : array Weighting matrix Returns ------- omega : array (k+1)x(k+1) """ psi, a1, a2 = psi sigma = get_psi_sigma(w, reg.u, lamb) psi_dd_1 = (1.0 / w.shape[0]) * reg.h.T * sigma psi_dd = spdot(psi_dd_1, reg.h) psi_dl = spdot(psi_dd_1, np.hstack((a1, a2))) psi_o = np.hstack( (np.vstack((psi_dd, psi_dl.T)), np.vstack((psi_dl, psi)))) psii = la.inv(psi) j = np.dot(G, np.array([[1.], [2 * lamb]])) jtpsii = np.dot(j.T, psii) jtpsiij = np.dot(jtpsii, j) jtpsiiji = la.inv(jtpsiij) omega_1 = np.dot(jtpsiiji, jtpsii) omega_2 = np.dot(np.dot(psii, j), jtpsiiji) om_1_s = omega_1.shape om_2_s = omega_2.shape p_s = P.shape omega_left = np.hstack((np.vstack((P.T, np.zeros((om_1_s[0], p_s[0])))), np.vstack((np.zeros((p_s[1], om_1_s[1])), omega_1)))) omega_right = np.hstack((np.vstack((P, np.zeros((om_2_s[0], p_s[1])))), np.vstack((np.zeros((p_s[0], om_2_s[1])), omega_2)))) omega = np.dot(np.dot(omega_left, psi_o), omega_right) return omega / w.shape[0] def _test(): import doctest doctest.testmod() if __name__ == '__main__': _test()