spreg Documentation

Release 1.1.0

pysal developers

Dec 03, 2019

CONTENTS:

1	Insta	llation	3		
2	API reference				
3 Spatial Regression Models					
	3.1	spreg.OLS	8		
	3.2	spreg.ML_Lag	13		
	3.3	spreg.ML_Error	17		
	3.4	spreg.GM_Lag	20		
	3.5	spreg.GM_Error	25		
	3.6	spreg.GM_Error_Het	27		
	3.7	spreg.GM_Error_Hom	30		
	3.8	spreg.GM_Combo	33		
	3.9	spreg.GM_Combo_Het	37		
	3.10	spreg.GM_Combo_Hom	41		
	3.11	spreg.GM_Endog_Error	44		
	3.12	spreg.GM_Endog_Error_Het	47		
	3.13	spreg.GM_Endog_Error_Hom	51		
	3.14	spreg.TSLS	54		
	3.15	spreg.ThreeSLS	58		
	3.16	Regimes Models	60		
		3.16.1 spreg.OLS_Regimes	61		
		3.16.2 spreg.ML_Lag_Regimes	66		
		3.16.3 spreg.ML_Error_Regimes	70		
		3.16.4 spreg.GM_Lag_Regimes	75		
		3.16.5 spreg.GM_Error_Regimes	81		
		3.16.6 spreg.GM_Error_Het_Regimes	85		
		3.16.7 spreg.GM_Error_Hom_Regimes	89		
		3.16.8 spreg.GM_Combo_Regimes	93		
		3.16.9 spreg.GM_Combo_Hom_Regimes	98		
			104		
		3.16.11 spreg.GM_Endog_Error_Regimes	109		
			114		
		3.16.13 spreg.GM_Endog_Error_Het_Regimes	118		
	3.17	Seemingly-Unrelated Regressions			
		3.17.1 spreg.SUR			
		3.17.2 spreg.SURerrorGM			
		3.17.3 spreg.SURerrorML			
		3.17.4 spreg.SURlagIV			
	3.18	Diagnostics			

	3.18.1	spreg.diagnostics.f_stat	137				
	3.18.2	spreg.diagnostics.t_stat	138				
	3.18.3	spreg.diagnostics.r2	139				
	3.18.4	spreg.diagnostics.ar2	140				
	3.18.5	spreg.diagnostics.se_betas	140				
	3.18.6	spreg.diagnostics.log_likelihood	141				
	3.18.7	spreg.diagnostics.akaike	142				
	3.18.8	spreg.diagnostics.schwarz	143				
	3.18.9	spreg.diagnostics.condition_index	144				
	3.18.10) spreg.diagnostics.jarque_bera	145				
	3.18.11	l spreg.diagnostics.breusch_pagan	146				
	3.18.12	2 spreg.diagnostics.white	147				
	3.18.13	3 spreg.diagnostics.koenker_bassett	149				
	3.18.14	4 spreg.diagnostics.vif	150				
	3.18.15	5 spreg.diagnostics.likratiotest	151				
	3.18.16	5 spreg.diagnostics_sp.LMtests	152				
	3.18.17	7 spreg.diagnostics_sp.MoranRes	154				
	3.18.18	3 spreg.diagnostics_sp.AKtest	156				
	3.18.19	9 spreg.diagnostics_sur.sur_setp	158				
	3.18.20) spreg.diagnostics_sur.sur_lrtest	158				
	3.18.21	l spreg.diagnostics_sur.sur_lmtest	158				
	3.18.22	2 spreg.diagnostics_sur.lam_setp	159				
	3.18.23	3 spreg.diagnostics_sur.surLMe	159				
	3.18.24	\$ spreg.diagnostics_sur.surLMlag	159				
4	References		161				
Bi	Bibliography 16						

4	References

165

spreg, short for "spatial regression," is a python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another. For more information on these models, consult the Spatial Regression short course by Luc Anselin (Spring, 2017), with the Center for Spatial Data Science at the University of Chicago:

CHAPTER

ONE

INSTALLATION

spreg is installable using the Python Package Manager, *pip*. To install:

pip install spreg

Further, all of the stable functionality is *also* available in PySAL, the Python Spatial Analysis Library. PySAL can be installed using *pip* or *conda*:

pip install pysal *#or* conda install pysal

CHAPTER

TWO

API REFERENCE

SPATIAL REGRESSION MODELS

These are the standard spatial regression models supported by the *spreg* package. Each of them contains a significant amount of detail in their docstring discussing how they're used, how they're fit, and how to interpret the results.

<pre>spreg.OLS(y, x[, w, robust, gwk, sig2n_k,])</pre>	Ordinary least squares with results and diagnostics.
<pre>spreg.ML_Lag(y, x, w[, method, epsilon,])</pre>	ML estimation of the spatial lag model with all results
	and diagnostics; [Ans88]
<pre>spreg.ML_Error(y, x, w[, method, epsilon,])</pre>	ML estimation of the spatial error model with all results
	and diagnostics; [Ans88]
<pre>spreg.GM_Lag(y, x[, yend, q, w, w_lags,])</pre>	Spatial two stage least squares (S2SLS) with results and
	diagnostics; Anselin (1988) [Ans88]
<pre>spreg.GM_Error(y, x, w[, vm, name_y,])</pre>	GMM method for a spatial error model, with results and
	diagnostics; based on Kelejian and Prucha (1998, 1999)
	[KP98] [KP99].
<pre>spreg.GM_Error_Het(y, x, w[, max_iter,])</pre>	GMM method for a spatial error model with het-
	eroskedasticity, with results and diagnostics; based on
anner (M. Enner Her(u.v. w[max iter])	[ADKP10], following [Ans11]. GMM method for a spatial error model with ho-
<pre>spreg.GM_Error_Hom(y, x, w[, max_iter,])</pre>	moskedasticity, with results and diagnostics; based on
	Drukker et al.
<pre>spreg.GM_Combo(y, x[, yend, q, w, w_lags,])</pre>	GMM method for a spatial lag and error model with en-
<i>bpreg.or_combo(y, x[, yond, q, w, w_ngb,))</i>	dogenous variables, with results and diagnostics; based
	on Kelejian and Prucha (1998, 1999) [KP98] [KP99].
<pre>spreg.GM_Combo_Het(y, x[, yend, q, w,])</pre>	GMM method for a spatial lag and error model with
	heteroskedasticity and endogenous variables, with re-
	sults and diagnostics; based on [ADKP10], following
	[Ans11].
<pre>spreg.GM_Combo_Hom(y, x[, yend, q, w,])</pre>	GMM method for a spatial lag and error model with ho-
	moskedasticity and endogenous variables, with results
	and diagnostics; based on Drukker et al.
spreg.GM_Endog_Error(y, x, yend, q, w[, vm,	GMM method for a spatial error model with endoge-
])	nous variables, with results and diagnostics; based on
anner (M. Freder, Freder, Ustar, vord, a. wi	Kelejian and Prucha (1998, 1999) [KP98] [KP99]. GMM method for a spatial error model with het-
<pre>spreg.GM_Endog_Error_Het(y, x, yend, q, w[,])</pre>	eroskedasticity and endogenous variables, with re-
])	sults and diagnostics; based on [ADKP10], following
	[Ans11].
<pre>spreg.GM_Endog_Error_Hom(y, x, yend, q, w[,</pre>	GMM method for a spatial error model with ho-
])	moskedasticity and endogenous variables, with results
	and diagnostics; based on Drukker et al.
	Continued on next page

	Table 1 – continued from previous page					
<pre>spreg.TSLS(y, x, yend, q[, w, robust, gwk,])</pre>		Two stage least squares with results and diagnostics.				
	<pre>spreg.ThreeSLS(bigy, bigX, bigyend, bigq[,])</pre>	User class for 3SLS estimation				

Table	1 – continued	from	previous	page
-------	---------------	------	----------	------

3.1 spreg.OLS

class spreg.**OLS**(y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, *spat_diag=False*, *moran=False*, *white_test=False*, *vm=False*, name_y=None, name x=None, name w=None, name gwk=None, name ds=None)

Ordinary least squares with results and diagnostics.

Parameters

- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [pysal W object] Spatial weights object (required if running spatial diagnostics)
- robust [string] If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- gwk [pysal W object] Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k [boolean] If True, then use n-k to estimate sigma^2. If False, use n.
- **nonspat diag** [boolean] If True, then compute non-spatial diagnostics on the regression.
- **spat diag** [boolean] If True, then compute Lagrange multiplier tests (requires w). Note: see moran for further tests.
- **moran** [boolean] If True, compute Moran's I on the residuals. Note: requires spat_diag=True.
- white_test [boolean] If True, compute White's specification robust test. (requires nonspat_diag=True)

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name ds [string] Name of dataset for use in output

Examples

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; also, the actual OLS class requires data to be passed in as numpy arrays so the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an nx1 numpy array.

```
>>> hoval = db.by_col("HOVAL")
>>> y = np.array(hoval)
>>> y.shape = (len(hoval), 1)
```

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). spreg.OLS adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

The minimum parameters needed to run an ordinary least squares regression are the two numpy arrays containing the independent variable and dependent variables respectively. To make the printed results more meaningful, the user can pass in explicit names for the variables used; this is optional.

spreg.OLS computes the regression coefficients and their standard errors, t-stats and p-values. It also computes a large battery of diagnostics on the regression. In this example we compute the white test which by default isn't ('white_test=True'). All of these results can be independently accessed as attributes of the regression object created by running spreg.OLS. They can also be accessed at one time by printing the summary attribute of the regression object. In the example below, the parameter on crime is -0.4849, with a t-statistic of -2.6544 and p-value of 0.01087.

```
>>> ols.betas
array([[ 46.42818268],
                    [ 0.62898397],
                         [ -0.48488854]])
>>> print round(ols.t_stat[2][0],3)
-2.654
>>> print round(ols.t_stat[2][1],3)
0.011
>>> print round(ols.r2,3)
0.35
```

Or we can easily obtain a full summary of all the results nicely formatted and ready to be printed:

```
>>> print ols.summary
REGRESSION
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
_____
            :
Data set
                       columbus
Dependent Variable : home value
                                               Number of Observations:
\rightarrow 49
Mean dependent var :
                       38.4362
                                               Number of Variables
                                                                     :
                                                                               <u>ب</u>
\rightarrow 3
S.D. dependent var : 18.4661
                                               Degrees of Freedom
                                                                     :
                                                                               L.
<u>→</u>46
```

			(continued	from j	previous page)
1 1	. 0.3495				
Adjusted R-squared	: 0.3212				
Sum squared residual →3582	: 10647.015	10647.015 F-statistic		:	12.
Sigma-square →05	: 231.457	Prob	(F-statistic)	:	5.064e-
S.E. of regression →368	: 15.214	Log l	likelihood	:	-201.
Sigma-square ML →735	: 217.286	Akaik	ke info criterion	:	408.
S.E of regression ML \hookrightarrow 411	: 14.7406	Schwa	arz criterion	:	414.
Variable ⊶Probability	Coefficient	Std.Error	t-Statistic	L	
CONSTANT ↔0009867	46.4281827	13.1917570	3.5194844		0.
	-0.4848885	0.1826729	-2.6544086		0.
	0.6289840	0.5359104	1.1736736		0.
REGRESSION DIAGNOSTI	~ S				
MULTICOLLINEARITY CON		12.538			
TEST ON NORMALITY OF	ERRORS				
TEST	DF	VALUE	PROB		
Jarque-Bera	2	39.706	0.0000		
DIAGNOSTICS FOR HETEN RANDOM COEFFICIENTS	ROSKEDASTICITY				
TEST	DF	VALUE	PROB		
Breusch-Pagan test	2	5.767	0.0559		
Koenker-Bassett test		2.270	0.3214		
SPECIFICATION ROBUST	TEST				
TEST	DF	VALUE	PROB		
White 5		2.906	0.7145		
=====================================	===== END (OF REPORT <mark>.</mark>			
└		==			

If the optional parameters w and spat_diag are passed to spreg.OLS, spatial diagnostics will also be computed for the regression. These include Lagrange multiplier tests and Moran's I of the residuals. The w parameter is a PySAL spatial weights matrix. In this example, w is built directly from the shapefile columbus.shp, but w can also be read in from a GAL or GWT file. In this case a rook contiguity weights matrix is built, but PySAL also offers queen contiguity, distance weights and k nearest neighbor weights among others. In the example, the Moran's I of the residuals is 0.204 with a standardized value of 2.592 and a p-value of 0.0095.

(continues on next page)

(continued from previous page)

(continued from previous page)

Attributes

- **summary** [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)
- betas [array] kx1 array of estimated coefficients
- u [array] nx1 array of residuals
- predy [array] nx1 array of predicted y values
- **n** [integer] Number of observations
- k [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- robust [string] Adjustment for robust standard errors
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- **vm** [array] Variance covariance matrix (kxk)
- r2 [float] R squared
- ar2 [float] Adjusted R squared
- utu [float] Sum of squared residuals
- sig2 [float] Sigma squared used in computations

sig2ML [float] Sigma squared (maximum likelihood)

f_stat [tuple] Statistic (float), p-value (float)

logll [float] Log likelihood

aic [float] Akaike information criterion

schwarz [float] Schwarz information criterion

- std_err [array] 1xk array of standard errors of the betas
- **t_stat** [list of tuples] t statistic; each tuple contains the pair (statistic, p-value), where each is a float

mulColli [float] Multicollinearity condition number

- **jarque_bera** [dictionary] 'jb': Jarque-Bera statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)
- **breusch_pagan** [dictionary] 'bp': Breusch-Pagan statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)
- **koenker_bassett** [dictionary] 'kb': Koenker-Bassett statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)
- white [dictionary] 'wh': White statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int)
- **lm_error** [tuple] Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float
- **Im_lag** [tuple] Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float
- **rlm_error** [tuple] Robust lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float
- **rlm_lag** [tuple] Robust lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float
- **Im_sarma** [tuple] Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float
- **moran_res** [tuple] Moran's I for the residuals; tuple containing the triple (Moran's I, standardized Moran's I, p-value)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_gwk [string] Name of kernel weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- title [string] Name of the regression method used

sig2n [float] Sigma squared (computed with n in the denominator)

sig2n_k [float] Sigma squared (computed with n-k in the denominator)

xtx [float] X'X

xtxi [float] $(X'X)^{-1}$

Methods

_init__(self, y, x[, w, robust, gwk, ...])

Initialize self.

Attributes

mean_y			
sig2n			
sig2n_k			
std_y			
utu			
vm			

3.2 spreg.ML_Lag

class	spreg. ML	_Lag (<i>y</i> , <i>x</i> , <i>w</i> , <i>met</i>	hod='full', epsi	lon=1e-07, spat	_diag=False,	vm=False, name_	_y=None,
		name_x=N	lone, name_w=l	None, name_ds=	None)		

ML estimation of the spatial lag model with all results and diagnostics; [Ans88]

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [pysal W object] Spatial weights object
- **method** [string] if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method

epsilon [float] tolerance criterion in mimimize_scalar function and inverse_product

spat_diag [boolean] if True, include spatial diagnostics

vm [boolean] if True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

```
>>> import numpy as np
>>> import libpysal
>>> db = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y), 1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
>>> mllag = ML_Lag(y,x,w,name_y=y_name,name_x=x_names,
                                                                      name w=w
⇔name,name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
```

(continued from previous page)

```
array([[ 4.3675],
      [ 0.7502],
      [ 5.6116],
      [ 7.0497],
      [ 7.7246],
      [ 6.1231],
      [ 4.6375],
      [-0.1107],
      [ 0.0679],
      [ 0.0794],
      [ 0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vml), decimals=4)
array([ 23.8716,
                    1.1222,
                              3.0593,
                                        7.3416,
                                                    5.6695,
                                                               5.4698,
                                         0.0266,
                                                     0.0032, 220.1292])
          2.8684,
                    0.0026,
                               0.0002,
>>> np.around(np.diag(mllag.vm), decimals=4)
                                               5.6695, 5.4698,
array([ 23.8716, 1.1222, 3.0593, 7.3416,
         2.8684,
                  0.0026,
                            0.0002,
                                     0.0266, 0.00321)
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.4f}".format(mllag.pr2_e)
'0.7062'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([ 4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
       0.0508, 0.0146, 0.1631, 0.057 ])
>>> np.around(mllag.z stat, decimals=4)
array([[ 0.8939, 0.3714],
      [ 0.7082, 0.4788],
      [ 3.2083, 0.0013],
      [ 2.6018, 0.0093],
       [ 3.2442, 0.0012],
      [ 2.6181, 0.0088],
      [ 2.7382, 0.0062],
      [-2.178 , 0.0294],
      [ 4.6487, 0.
                       1,
      [ 0.4866, 0.6266],
       [7.4775, 0. ]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ',
→'SQFT', 'W_PRICE']
```

```
(continued from previous page)
```

```
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)'
>>> mllag = ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names,

→name_w=w_name, name_ds=ds_name)

>>> np.around(mllag.betas, decimals=4)
array([[ 4.3675],
      [ 0.7502],
      [ 5.6116],
      [ 7.0497],
      [ 7.7246],
      [ 6.1231],
      [ 4.6375],
      [-0.1107],
      [ 0.0679],
      [ 0.0794],
      [ 0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vml), decimals=4)
array([ 23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
                                                   0.0032, 220.1292])
         2.8684,
                   0.0026,
                              0.0002,
                                         0.0266,
>>> np.around(np.diag(mllag.vm), decimals=4)
array([ 23.8716, 1.1222, 3.0593, 7.3416, 5.6695,
                                                          5.4698,
                           0.0002, 0.0266,
                 0.0026,
        2.8684,
                                              0.00321)
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832,937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.6f}".format(mllag.pr2_e)
'0.706198'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([ 4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
       0.0508, 0.0146, 0.1631, 0.057 ])
>>> np.around(mllag.z_stat, decimals=4)
array([[ 0.8939, 0.3714],
      [ 0.7082, 0.4788],
      [ 3.2083, 0.0013],
      [ 2.6018, 0.0093],
      [ 3.2442, 0.0012],
      [ 2.6181, 0.0088],
      [ 2.7382, 0.0062],
```

(continued from previous page)

```
[-2.178 , 0.0294],
       [ 4.6487, 0.
                       ],
       [ 0.4866, 0.6266],
       [7.4775, 0. ]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ',
↔'SQFT', 'W_PRICE']
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllaq.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)'
```

Attributes

betas [array] (k+1)x1 array of estimated coefficients (rho first)

rho [float] estimate of spatial autoregressive coefficient

u [array] nx1 array of residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant, excluding the rho)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- method [string] log Jacobian method if 'full': brute force (full matrix computations)

epsilon [float] tolerance criterion used in minimize_scalar function and inverse_product

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

vm [array] Variance covariance matrix (k+1 x k+1), all coefficients

vm1 [array] Variance covariance matrix (k+2 x k+2), includes sig2

sig2 [float] Sigma squared used in computations

logl [float] maximized log-likelihood (including constant terms)

aic [float] Akaike information criterion

schwarz [float] Schwarz criterion

predy_e [array] predicted values from reduced form

e_pred [array] prediction errors using reduced form predicted values

pr2 [float] Pseudo R squared (squared correlation between y and ypred)

pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) utu [float] Sum of squared residuals

- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- name_y [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- name_w [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- title [string] Name of the regression method used

Methods

init_	_(self, y, x,	w[, method,	epsilon,	.])	Initialize self.
-------	---------------	-------------	----------	-----	------------------

Attributes

mean_y	
sig2n	
mean_y sig2n sig2n_k std_y utu	
std_y	
utu	
vm	

3.3 spreg.ML_Error

class spreg.**ML_Error**(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

ML estimation of the spatial error model with all results and diagnostics; [Ans88]

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [Sparse matrix] Spatial weights sparse matrix
- **method** [string] if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition

epsilon [float] tolerance criterion in mimimize_scalar function and inverse_product

spat_diag [boolean] if True, include spatial diagnostics (not implemented yet)

vm [boolean] if True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> np.set_printoptions(suppress=True) #prevent scientific format
>>> db = libpysal.io.open(examples.get_path("south.dbf"),'r')
>>> y_name = "HR90"
>>> y = np.array(db.by_col(y_name))
>>> y.shape = (len(y), 1)
>>> x names = ["RD90", "PS90", "UE90", "DV90"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = libpysal.io.open(libpysal.examples.get_path("south_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "south_q.qal"
>>> w.transform = 'r'
>>> mlerr = ML_Error(y, x, w, name_y=y_name, name_x=x_names,
                                                                        name w=w

→name, name_ds=ds_name)

>>> np.around(mlerr.betas, decimals=4)
array([[ 6.1492],
       [ 4.4024],
       [ 1.7784],
       [-0.3781],
       [ 0.4858],
       [ 0.2991]])
>>> "{0:.4f}".format(mlerr.lam)
'0.2991'
>>> "{0:.4f}".format(mlerr.mean_y)
'9.5493'
>>> "{0:.4f}".format(mlerr.std_y)
'7.0389'
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([ 1.0648, 0.0555, 0.0454, 0.0061, 0.0148, 0.0014])
>>> np.around(mlerr.sig2, decimals=4)
array([[ 32.4069]])
>>> "{0:.4f}".format(mlerr.logll)
'-4471.4071'
>>> "{0:.4f}".format(mlerr.aic)
'8952.8141'
>>> "{0:.4f}".format(mlerr.schwarz)
'8979.0779'
>>> "{0:.4f}".format(mlerr.pr2)
'0.3058'
>>> "{0:.4f}".format(mlerr.utu)
'48534.9148'
>>> np.around(mlerr.std_err, decimals=4)
array([ 1.0319, 0.2355, 0.2132, 0.0784, 0.1217, 0.0378])
>>> np.around(mlerr.z_stat, decimals=4)
array([[ 5.9593,
                  Ο.
                         ],
```

(continued from previous page)

```
[ 18.6902,
                    Ο.
                          ],
       [ 8.3422,
                  Ο.
                          ],
       [ -4.8233,
                  Ο.
                          ],
                  0.0001],
         3.9913,
       Γ
       [
         7.9089,
                  Ο.
                          ]])
>>> mlerr.name_y
'HR90'
>>> mlerr.name_x
['CONSTANT', 'RD90', 'PS90', 'UE90', 'DV90', 'lambda']
>>> mlerr.name_w
'south_q.gal'
>>> mlerr.name_ds
'south.dbf'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)'
```

Attributes

betas [array] (k+1)x1 array of estimated coefficients (rho first)

lam [float] estimate of spatial autoregressive coefficient

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant, excluding lambda)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- method [string] log Jacobian method if 'full': brute force (full matrix computations)

epsilon [float] tolerance criterion used in minimize_scalar function and inverse_product

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

varb [array] Variance covariance matrix (k+1 x k+1) - includes var(lambda)

vm1 [array] variance covariance matrix for lambda, sigma (2 x 2)

sig2 [float] Sigma squared used in computations

- logll [float] maximized log-likelihood (including constant terms)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)

utu [float] Sum of squared residuals

std_err [array] 1xk array of standard errors of the betas

z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

Methods

get_x_lag

Methods

<pre>init(self, y, x, w[, method, epsilon,])</pre>	Initialize self.	
get_x_lag(self, w, regimes_att)		

Attributes

mean_y	
mean_ysig2n	
sig2n_k	
std_y	
utu	
vm	

3.4 spreg.GM_Lag

class spreg.GM_Lag(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

Spatial two stage least squares (S2SLS) with results and diagnostics; Anselin (1988) [Ans88]

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x); cannot be used in combination with h
- w [pysal W object] Spatial weights object

- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **robust** [string] If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- **gwk** [pysal W object] Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k [boolean] If True, then use n-k to estimate sigma^2. If False, use n.
- spat_diag [boolean] If True, then compute Anselin-Kelejian test

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. Since we will need some tests for our model, we also import the diagnostics module.

```
>>> import numpy as np
>>> import libpysal
>>> import spreg.diagnostics as D
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the HOVAL column (home value) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

This class runs a lag model, which means that includes the spatial lag of the dependent variable on the right-hand side of the equation. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. The default most basic model to be run would be:

Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module:

```
>>> D.se_betas(reg)
array([ 17.91278862, 0.52486082, 0.1822815, 0.31740089])
```

But we can also run models that incorporates corrected standard errors following the White procedure. For that, we will have to include the optional parameter robust='white':

And we can access the standard errors from the model object:

```
>>> reg.std_err
array([ 20.47077481, 0.50613931, 0.20138425, 0.38028295])
```

The class is flexible enough to accomodate a spatial lag model that, besides the spatial lag of the dependent variable, includes other non-spatial endogenous regressors. As an example, we will assume that CRIME is actually endogenous and we decide to instrument for it with DISCBD (distance to the CBD). We reload the X including INC only and define CRIME as endogenous and DISCBD as instrument:

```
>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))
```

And we can run the model again:

Once the model is run, we can obtain the standard error of the coefficient estimates by calling the diagnostics module:

```
>>> D.se_betas(reg)
array([ 53.0829123 , 1.02511494, 0.57589064, 0.59891744])
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)

kstar [integer] Number of endogenous variables.

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- **z** [array] nxk array of variables (combination of x and yend)
- **h** [array] nxl array of instruments (combination of x and q)

robust [string] Adjustment for robust standard errors

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
- utu [float] Sum of squared residuals
- sig2 [float] Sigma squared used in computations
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

ak_test [tuple] Anselin-Kelejian test; tuple contains the pair (statistic, p-value)

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

sig2n [float] Sigma squared (computed with n in the denominator)

sig2n_k [float] Sigma squared (computed with n-k in the denominator)

hth [float] H'H

hthi [float] $(H'H)^{-1}$

varb [array] $(Z'H(H'H)^{-1}H'Z)^{-1}$

zthhthi [array] $Z'H(H'H)^{-1}$

pfora1a2 [array] n(zthhthi)'varb

__init__ (self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None) Initialize self. See help(type(self)) for accurate signature.

Methods

__init___(self, y, x[, yend, q, w, w_lags, ...]) Initialize self.

Attributes

mean_y		
pforala2		
sig2n		
sig2n sig2n_k std_y utu		
std_y		
utu		
vm		

3.5 spreg.GM_Error

GMM method for a spatial error model, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [pysal W object] Spatial weights object (always needed)

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

>>> y = np.array([dbf.by_col('HOVAL')]).T

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent

variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> names_to_extract = ['INC', 'CRIME']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use columbus.gal, which contains contiguity relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas).

```
>>> print model.name_x
['CONSTANT', 'income', 'crime', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[ 47.6946],
       [ 0.7105],
       [-0.5505],
       [ 0.3257]])
>>> np.around(model.std_err, decimals=4)
array([ 12.412 , 0.5044, 0.1785])
>>> np.around(model.z_stat, decimals=6)
array([[ 3.84261100e+00, 1.22000000e-04],
         1.40839200e+00,
                           1.59015000e-01],
       Γ
       [ -3.08424700e+00,
                           2.04100000e-03]])
>>> round(model.sig2,4)
198.5596
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- k [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)
- vm [array] Variance covariance matrix (kxk)
- sig2 [float] Sigma squared used in computations
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

__init___(self, y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

Attributes

mean_y			
std_y			

3.6 spreg.GM_Error_Het

class spreg.**GM_Error_Het**(y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False,

name_y=None, *name_x=None*, *name_w=None*, *name_ds=None*) GMM method for a spatial error model with heteroskedasticity, with results and diagnostics; based on [ADKP10], following [Ans11].

Parameters

y [array] nx1 array for dependent variable

- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [pysal W object] Spatial weights object
- max_iter [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- step1c [boolean] If True, then include Step 1c from [ADKP10].

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter.

```
>>> print reg.name_x
['CONSTANT', 'income', 'crime', 'lambda']
```

Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10].

mean_y [float] Mean of dependent variable

- **std_y** [float] Standard deviation of dependent variable
- **pr2** [float] Pseudo R squared (squared correlation between y and ypred)
- vm [array] Variance covariance matrix (kxk)
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

xtx [float] X'X

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

Methods

Attributes

mean_y			
std_y			

3.7 spreg.GM_Error_Hom

class spreg.**GM_Error_Hom**(y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name y=None, name x=None, name w=None, name ds=None)

GMM method for a spatial error model with homoskedasticity, with results and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- w [pysal W object] Spatial weights object
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.

A1 [string] If A1='het', then the matrix A1 is defined as in Arraiz et al. If A1='hom', then as in [Ans11]. If A1='hom_sc' (default), then as in [DEP13] and [DPR13].

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. This is why you obtain as many coefficient estimates as standard errors, which you calculate taking the square root of the diagonal of the variance-covariance matrix of the parameters:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from Arraiz et al.

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

pr2 [float] Pseudo R squared (squared correlation between y and ypred)

vm [array] Variance covariance matrix (kxk)

sig2 [float] Sigma squared used in computations

std_err [array] 1xk array of standard errors of the betas

z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

xtx [float] X'X

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

Methods

Attributes

mean_y		
std_y		

3.8 spreg.GM_Combo

class spreg.**GM_Combo**(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None,

name w=None, name ds=None)

GMM method for a spatial lag and error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

Parameters

y [array] nx1 array for dependent variable

x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w [pysal W object] Spatial weights object (always needed)
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- lag_q [boolean] If True, then include spatial lags of the additional instruments (q).

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error

model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the spatial lag of the dependent variable. We can check the betas:

And lambda:

```
>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [-0.048]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include HOVAL (home value) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [0.254]

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- u [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

z [array] nxk array of variables (combination of x and yend)

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

vm [array] Variance covariance matrix (kxk)

- **pr2** [float] Pseudo R squared (squared correlation between y and ypred)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
- sig2 [float] Sigma squared used in computations (based on filtered residuals)
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- **name_y** [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

Methods

__init___(self, y, x[, yend, q, w, w_lags, ...]) Initialize self.

Attributes

mean_y			
std_y			

3.9 spreg.GM_Combo_Het

GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w [pysal W object] Spatial weights object (always needed)
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- step1c [boolean] If True, then include Step 1c from [ADKP10].
- **inv_method** [string] If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm [boolean] If True, include variance-covariance matrix in summary results
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')
```

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals
- e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

n [integer] Number of observations

- k [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- **z** [array] nxk array of variables (combination of x and yend)
- **h** [array] nxl array of instruments (combination of x and q)
- iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10].

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

- **vm** [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

hth [float] H'H

__init___(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None) Initialize self. See help(type(self)) for accurate signature.

Methods

_____init___(self, y, x[, yend, q, w, w_lags, ...]) Initialize self.

Attributes

mean_y std_y

3.10 spreg.GM_Combo_Hom

class spreg.**GM_Combo_Hom** (*y*, *x*, *yend=None*, *q=None*, *w=None*, *w_lags=1*, *lag_q=True*, *max_iter=1*, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None,

name yend=None, name q=None, name w=None, name ds=None)

GMM method for a spatial lag and error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **w** [pysal W object] Spatial weights object (always necessary)
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- A1 [string] If A1='het', then the matrix A1 is defined as in [ADKP10]. If A1='hom', then as in [Ans11]. If A1='hom_sc' (default), then as in [DEP13] and [DPR13].
- vm [boolean] If True, include variance-covariance matrix in summary results
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Combo_Hom(y, X, w=w, A1='hom_sc', name_x=['inc'], name_y=

→ 'hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,

→1))),4)

[[ 10.1254 15.2871]

[ 1.5683 0.4407]

[ 0.1513 0.4048]

[ 0.2103 0.4226]]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. As an example, we will include CRIME (crime rates) as endogenous and will instrument with DISCBD (distance to the CSB). We first need to read in the variables:

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
```

(continues on next page)

(continued from previous page)

```
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc', name_ds=

->'columbus')
>>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']])
>>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.

->diagonal()).reshape(5,1))),5)))
['CONSTANT' '111.7705' '67.75191']
['inc' '-0.30974' '1.16656']
['crime' '-1.36043' '0.6841']
['W_hoval' '-0.52908' '0.84428']
['lambda' '0.60116' '0.18605']]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- **z** [array] nxk array of variables (combination of x and yend)
- **h** [array] nxl array of instruments (combination of x and q)

iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10].

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

vm [array] Variance covariance matrix (kxk)

pr2 [float] Pseudo R squared (squared correlation between y and ypred)

- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form))
- sig2 [float] Sigma squared used in computations (based on filtered residuals)
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

hth [float] H'H

__init___(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None) Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self, y, x[, yend, q, w, w_lags, ...]) Initialize self.

Attributes

mean_y		
std_y		

3.11 spreg.GM_Endog_Error

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

q [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)

w [pysal W object] Spatial weights object (always needed)

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

>>> y = np.array([dbf.by_col('CRIME')]).T

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

>>> x = np.array([dbf.by_col('INC')]).T

In this case we consider HOVAL (home value) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

>>> yend = np.array([dbf.by_col('HOVAL')]).T

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for HOVAL. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = np.array([dbf.by_col('DISCBD')]).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will use columbus.gal, which contains contiguity

relationships between the observations in the Columbus dataset we are using throughout this example. Note that, in order to read the file, not only to open it, we need to append '.read()' at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform='r'
```

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the endogenous variables included.

```
>>> print model.name_z
['CONSTANT', 'inc', 'hoval', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[ 82.573 ],
       [ 0.581 ],
       [ -1.4481],
       [ 0.3499]])
>>> np.around(model.std_err, decimals=4)
array([ 16.1381, 1.3545, 0.7862])
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

z [array] nxk array of variables (combination of x and yend)

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

vm [array] Variance covariance matrix (kxk)

pr2 [float] Pseudo R squared (squared correlation between y and ypred)

sig2 [float] Sigma squared used in computations

std_err [array] 1xk array of standard errors of the betas

z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

Methods

Attributes

mean_y			
std_y			

3.12 spreg.GM_Endog_Error_Het

class spreg.GM_Endog_Error_Het	(y, x, yend, q, w, n)	nax_iter=1, epsilon=1e-0.	5, step1c=False,
	inv_method='power_	_exp', vm=False,	name_y=None,
	name_x=None,	name_yend=None,	name_q=None,
	name w=None, nam	e ds = None)	

GMM method for a spatial error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].

Parameters

y [array] nx1 array for dependent variable

- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w [pysal W object] Spatial weights object
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- step1c [boolean] If True, then include Step 1c from [ADKP10].
- **inv_method** [string] If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- z [array] nxk array of variables (combination of x and yend)

h [array] nxl array of instruments (combination of x and q)

iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10].

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)
- std_err [array] 1xk array of standard errors of the betas
- **z_stat** [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_yend** [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

hth [float] H'H

Initialize self. See help(type(self)) for accurate signature.

Methods

init	(self v v vend	, q, w[, max_iter,])	Initialize self.
	(sen, y, x, yenu	$, \mathbf{q}, \mathbf{w}{[}, \mathbf{max}_{[101]}, \ldots])$	minualize sen.

Attributes

mean_y		
std_y		

3.13 spreg.GM_Endog_Error_Hom

class spreg.**GM_Endog_Error_Hom**(y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None,

name_q=None, name_w=None, name_ds=None)

GMM method for a spatial error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w [pysal W object] Spatial weights object
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- A1 [string] If A1='het', then the matrix A1 is defined as in [ADKP10]. If A1='hom', then as in [Ans11]. If A1='hom_sc' (default), then as in [DEP13] and [DPR13].
- vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this class adds a vector of ones to the independent variables passed in.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case we consider CRIME (crime rates) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for CRIME. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

```
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, his allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_

y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
```

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- z [array] nxk array of variables (combination of x and yend)

h [array] nxl array of instruments (combination of x and q)

iter_stop [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10].

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10].

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

vm [array] Variance covariance matrix (kxk)

pr2 [float] Pseudo R squared (squared correlation between y and ypred)

sig2 [float] Sigma squared used in computations

std_err [array] 1xk array of standard errors of the betas

z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

hth [float] H'H

Methods

____init___(self, y, x, yend, q, w[, max_iter, ...]) Initialize self.

Attributes

mean_y		
std_y		

3.14 spreg.TSLS

Two stage least squares with results and diagnostics.

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

q [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)

w [pysal W object] Spatial weights object (required if running spatial diagnostics)

robust [string] If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given.

Default set to None.

gwk [pysal W object] Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.

sig2n_k [boolean] If True, then use n-k to estimate sigma^2. If False, use n.

spat_diag [boolean] If True, then compute Anselin-Kelejian test (requires w)

vm [boolean] If True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case we consider HOVAL (home value) is an endogenous regressor. We tell the model that this is so by passing it in a different parameter from the exogenous variables (x).

```
>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
```

Because we have endogenous variables, to obtain a correct estimate of the model, we need to instrument for HOVAL. We use DISCBD (distance to the CBD) for this and hence put it in the instruments parameter, 'q'.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

We are all set with the preliminars, we are good to run the model. In this case, we will need the variables (exogenous and endogenous) and the instruments. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

```
>>> reg = TSLS(y, X, yd, q, name_x=['inc'], name_y='crime', name_yend=['hoval'],

oname_q=['discbd'], name_ds='columbus')
>>> print reg.betas
[[ 88.46579584]
[ 0.5200379 ]
[ -1.58216593]]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- u [array] nx1 array of residuals
- predy [array] nx1 array of predicted y values
- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant)

kstar [integer] Number of endogenous variables.

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments
- z [array] nxk array of variables (combination of x and yend)
- **h** [array] nxl array of instruments (combination of x and q)

robust [string] Adjustment for robust standard errors

mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred)
- utu [float] Sum of squared residuals

sig2 [float] Sigma squared used in computations

std_err [array] 1xk array of standard errors of the betas

z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float

ak_test [tuple] Anselin-Kelejian test; tuple contains the pair (statistic, p-value)

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_z [list of strings] Names of exogenous and endogenous variables for use in output

name_q [list of strings] Names of external instruments

name_h [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

title [string] Name of the regression method used

sig2n [float] Sigma squared (computed with n in the denominator)

 $sig2n_k$ [float] Sigma squared (computed with n-k in the denominator)

hth [float] H'H

hthi [float] $(H'H)^{-1}$

varb [array] $(Z'H(H'H)^{-1}H'Z)^{-1}$

zthhthi [array] $Z'H(H'H)^{-1}$

pfora1a2 [array] n(zthhthi)'varb

__init___(self, y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None) Initialize self. See help(type(self)) for accurate signature.

Methods

<pre>init(self, y, x, yend, q[, w, robust,])</pre>	Initialize self.
--	------------------

Attributes

mean_y	
pforala2	
sig2n	
sig2n_k	
std_y	
utu	

Continued on next page

Table 29 – continued from previous page

vm

3.15 spreg.ThreeSLS

User class for 3SLS estimation

Parameters

bigy [dictionary] with vector for dependent variable by equation

bigX [dictionary] with matrix of explanatory variables by equation (note, already includes constant term)

bigyend [dictionary] with matrix of endogenous variables by equation

bigq [dictionary] with matrix of instruments by equation

- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- nonspat_diag: boolean flag for non-spatial diagnostics, default = True.
- name_bigy [dictionary] with name of dependent variable for each equation. default = None, but should be specified. is done when sur_stackxy is used
- name_bigX [dictionary] with names of explanatory variables for each equation. default = None, but should be specified. is done when sur_stackxy is used
- name_bigyend [dictionary] with names of endogenous variables for each equation. default =
 None, but should be specified. is done when sur_stackZ is used
- name_bigq [dictionary] with names of instrumental variables for each equation. default =
 None, but should be specified. is done when sur_stackZ is used.

name_ds [string] name for the data set.

name_regimes [string] name of regime variable for use in the output.

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. In this example, equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors, RD80 as endogenous regressor and FP79 as additional instrument. For equation 2, HR90 is the dependent variable, PS90 and UE90 the exogenous regressors, RD90 as endogenous regressor and FP99 as additional instrument

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides two tools to create these dictionaries from the list of variables: sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and additional instruments (q).

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> req.tsls_inf
```

```
{0: array([[ 0.23220853, 29.81916157, 0.
                                                 ],
                                  Ο.
      [ 0.10373417, 13.77770036,
                                             1,
        0.03086193, 0.01601807,
                                  0.98721998],
      Γ
                                            ]]), 1: array([[ 0.28739415,
      [ 0.11131999, 32.18584124,
                                  Ο.
                                                                          26.
<u>⊶</u>52753638,
            0.
                     ],
      [ 0.09597031, 17.19606554,
                                  Ο.
                                             ],
      [ 0.04089547, -5.30204786,
                                  0.00000011],
      [
         0.13586789, 28.79638723,
                                  0.
                                             ]])}
```

Attributes

bigy [dictionary] with y values

bigZ [dictionary] with matrix of exogenous and endogenous variables for each equation

bigZHZH [dictionary] with matrix of cross products Zhat_r'Zhat_s

bigZHy [dictionary] with matrix of cross products Zhat_r'y_end_s

n_eq [int] number of equations

n [int] number of observations in each cross-section

bigK [array] vector with number of explanatory variables (including constant, exogenous and endogenous) for each equation

b2SLS [dictionary] with 2SLS regression coefficients for each equation

tslsE [array] N x n_eq array with OLS residuals for each equation

b3SLS [dictionary] with 3SLS regression coefficients for each equation

varb [array] variance-covariance matrix

sig [array] Sigma matrix of inter-equation error covariances

bigE [array] n by n_eq array of residuals

corr [array] inter-equation 3SLS error correlation matrix

- tsls_inf [dictionary] with standard error, asymptotic t and p-value, one for each equation
- **surchow** [array] list with tuples for Chow test on regression coefficients each tuple contains test value, degrees of freedom, p-value

name_ds [string] name for the data set

name_bigy [dictionary] with name of dependent variable for each equation

name_bigX [dictionary] with names of explanatory variables for each equation

name_bigyend [dictionary] with names of endogenous variables for each equation

name_bigq [dictionary] with names of instrumental variables for each equations

name_regimes [string] name of regime variable for use in the output

Initialize self. See help(type(self)) for accurate signature.

Methods

|--|

3.16 Regimes Models

Regimes models are variants of spatial regression models which allow for structural instability in parameters. That means that these models allow different coefficient values in distinct subsets of the data.

<pre>spreg.OLS_Regimes(y, x, regimes[, w,])</pre>	Ordinary least squares with results and diagnostics.
<pre>spreg.ML_Lag_Regimes(y, x, regimes[, w,])</pre>	ML estimation of the spatial lag model with regimes
	(note no consistency checks, diagnostics or constants
	added) [Ans88].
<pre>spreg.ML_Error_Regimes(y, x, regimes[, w,</pre>	ML estimation of the spatial error model with regimes
])	(note no consistency checks, diagnostics or constants
	added); Anselin (1988) [Ans88]
<pre>spreg.GM_Lag_Regimes(y, x, regimes[, yend,</pre>	Spatial two stage least squares (S2SLS) with regimes;
])	[Ans88]
<pre>spreg.GM_Error_Regimes(y, x, regimes, w[,</pre>	GMM method for a spatial error model with regimes,
])	with results and diagnostics; based on Kelejian and
	Prucha (1998, 1999) [KP98] [KP99].
<pre>spreg.GM_Error_Het_Regimes(y, x, regimes,</pre>	GMM method for a spatial error model with het-
w)	eroskedasticity and regimes; based on Arraiz et al
	[ADKP10], following Anselin [Ans11].
	Continued on next page

<pre>spreg.GM_Error_Hom_Regimes(y, x, regimes,</pre>	GMM method for a spatial error model with ho-	
w)	moskedasticity, with regimes, results and diagnostics;	
	based on Drukker et al.	
<pre>spreg.GM_Combo_Regimes(y, x, regimes[,])</pre>	GMM method for a spatial lag and error model with	
	regimes and endogenous variables, with results and di-	
	agnostics; based on Kelejian and Prucha (1998, 1999)	
	[KP98] [KP99].	
<pre>spreg.GM_Combo_Hom_Regimes(y, x, regimes[,</pre>	GMM method for a spatial lag and error model with ho-	
])	moskedasticity, regimes and endogenous variables, with	
	results and diagnostics; based on Drukker et al.	
<pre>spreg.GM_Combo_Het_Regimes(y, x, regimes[,</pre>	GMM method for a spatial lag and error model with	
])	heteroskedasticity, regimes and endogenous variables,	
	with results and diagnostics; based on Arraiz et al	
	[ADKP10], following Anselin [Ans11].	
<pre>spreg.GM_Endog_Error_Regimes(y, x, yend, q,</pre>	GMM method for a spatial error model with regimes	
)	and endogenous variables, with results and diagnos-	
	tics; based on Kelejian and Prucha (1998, 1999) [KP98]	
	[KP99].	
<pre>spreg.GM_Endog_Error_Hom_Regimes(y, x,</pre>	GMM method for a spatial error model with ho-	
yend,)	moskedasticity, regimes and endogenous variables.	
<pre>spreg.GM_Endog_Error_Het_Regimes(y, x,</pre>	GMM method for a spatial error model with het-	
yend,)	eroskedasticity, regimes and endogenous variables,	
	with results and diagnostics; based on Arraiz et al	
	[ADKP10], following Anselin [Ans11].	

Table 31 – continued from previous page

3.16.1 spreg.OLS_Regimes

class spreg.OLS_Regimes (y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

Ordinary least squares with results and diagnostics.

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object (required if running spatial diagnostics)
- **robust** [string] If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. Default set to None.
- **gwk** [pysal W object] Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.

sig2n_k [boolean] If True, then use n-k to estimate sigma^2. If False, use n.

nonspat_diag [boolean] If True, then compute non-spatial diagnostics on the regression.

- **spat_diag** [boolean] If True, then compute Lagrange multiplier tests (requires w). Note: see moran for further tests.
- moran [boolean] If True, compute Moran's I on the residuals. Note: requires spat_diag=True.
- white_test [boolean] If True, compute White's specification robust test. (requires nonspat_diag=True)
- vm [boolean] If True, include variance-covariance matrix in summary results
- **constant_regi: string, optional** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- **regime_err_sep** [boolean] If True, a separate regression is run for each regime.

cores [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = db.by_col(y_var)
>>> y = np.array(y).reshape(len(y), 1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = ['Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of

independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

We can now run the regression and then have a summary of the output by typing: olsr.summary Alternatively, we can just check the betas and standard errors of the parameters:

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **robust** [string] Adjustment for robust standard errors Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- mean_y [float] Mean of dependent variable

std_y [float] Standard deviation of dependent variable

- vm [array] Variance covariance matrix (kxk)
- **r2** [float] R squared Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- ar2 [float] Adjusted R squared Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- utu [float] Sum of squared residuals
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **sig2ML** [float] Sigma squared (maximum likelihood) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **f_stat** [tuple] Statistic (float), p-value (float) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **logll** [float] Log likelihood Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **aic** [float] Akaike information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- schwarz [float] Schwarz information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- t_stat [list of tuples] t statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **mulColli** [float] Multicollinearity condition number Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **jarque_bera** [dictionary] 'jb': Jarque-Bera statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **breusch_pagan** [dictionary] 'bp': Breusch-Pagan statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- koenker_bassett: dictionary 'kb': Koenker-Bassett statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int). Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details).
- white [dictionary] 'wh': White statistic (float); 'pvalue': p-value (float); 'df': degrees of freedom (int). Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **Im_error** [tuple] Lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- Im_lag [tuple] Lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **rlm_error** [tuple] Robust lagrange multiplier test for spatial error model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- **rlm_lag** [tuple] Robust lagrange multiplier test for spatial lag model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **Im_sarma** [tuple] Lagrange multiplier test for spatial SARMA model; tuple contains the pair (statistic, p-value), where each is a float. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **moran_res** [tuple] Moran's I for the residuals; tuple containing the triple (Moran's I, standardized Moran's I, p-value)
- **name_y** [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_gwk [string] Name of kernel weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regime variable for use in the output
- **title** [string] Name of the regression method used. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2n [float] Sigma squared (computed with n in the denominator)
- **sig2n_k** [float] Sigma squared (computed with n-k in the denominator)
- **xtx** [float] X'X. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **xtxi** [float] $(X'X)^{-1}$. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [string] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime.
- **cols2regi** [list] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep: boolean If True, a separate regression is run for each regime.

- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate.
- nr [int] Number of different regimes in the 'regimes' list.
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression.

Methods

Attributes

mean_y	
sig2n	
sig2n_k	
std_y	
utu	
vm	

3.16.2 spreg.ML_Lag_Regimes

ML estimation of the spatial lag model with regimes (note no consistency checks, diagnostics or constants added) [Ans88].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w [Sparse matrix] Spatial weights sparse matrix
- **method** [string] if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition

epsilon [float] tolerance criterion in mimimize_scalar function and inverse_product

- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

spat_diag [boolean] if True, include spatial diagnostics (not implemented yet)

vm [boolean] if True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regimes variable for use in output

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> db = libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
```

Since in this example we are interested in checking whether the results vary by regimes, we use CITCOU to define whether the location is in the city or outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

(continues on next page)

(continued from previous page)

```
[0.5385]])
>>> "{0:.6f}".format(mllag.rho)
'0.538503'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vml), decimals=4)
array([ 47.42 , 2.3953, 0.0051, 0.0648,
                                                  69.6765,
                                                            3.2066,
         0.0116,
                  0.0486,
                             0.004 , 390.7274])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([ 47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
        0.0116, 0.0486, 0.004 ])
>>> "{0:.6f}".format(mllag.sig2)
'200.044334'
>>> "{0:.6f}".format(mllag.logll)
'-864.985056'
>>> "{0:.6f}".format(mllag.aic)
'1747.970112'
>>> "{0:.6f}".format(mllag.schwarz)
'1778.136835'
>>> mllaq.title
'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)'
```

Attributes

- **summary** [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)
- **betas** [array] (k+1)x1 array of estimated coefficients (rho first)
- **rho** [float] estimate of spatial autoregressive coefficient Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **u** [array] nx1 array of residuals
- predy [array] nx1 array of predicted y values
- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant, excluding the rho) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **method** [string] log Jacobian method. if 'full': brute force (full matrix computations) if 'ord', Ord eigenvalue method if 'LU', LU sparse matrix decomposition
- epsilon [float] tolerance criterion used in minimize_scalar function and inverse_product

mean_y [float] Mean of dependent variable

- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (k+1 x k+1), all coefficients

- vm1 [array] Variance covariance matrix (k+2 x k+2), includes sig2 Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **logll** [float] maximized log-likelihood (including constant terms) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **aic** [float] Akaike information criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **schwarz** [float] Schwarz criterion Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- predy_e [array] predicted values from reduced form
- e_pred [array] prediction errors using reduced form predicted values
- **pr2** [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- name_w [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi:** [**'one', 'many'**] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

regime_err_sep: boolean always set to False - kept for compatibility with other regime models

- **kr** [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

ML_Lag_Regimes_Multi

__init__ (self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None) Initialize self. See help(type(self)) for accurate signature.

Methods

ML_Lag_Regimes_Multi(self, y, x, w_i, w,)	
init(self, y, x, regimes[, w,])	Initialize self.

Attributes

mean_y			
sig2n			
sig2n_k			
stdy			
utu			
vm			

3.16.3 spreg.ML_Error_Regimes

ML estimation of the spatial error model with regimes (note no consistency checks, diagnostics or constants added); Anselin (1988) [Ans88]

Parameters

- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous)

variable, excluding the constant

- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w [Sparse matrix] Spatial weights sparse matrix
- **method** [string] if 'full', brute force calculation (full matrix expressions) if 'ord', Ord eigenvalue computation if 'LU', LU sparse matrix decomposition
- epsilon [float] tolerance criterion in mimimize_scalar function and inverse_product

regime_err_sep: boolean If True, a separate regression is run for each regime.

regime_lag_sep: boolean Always False, kept for consistency in function call, ignored.

cores [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

spat_diag [boolean] if True, include spatial diagnostics (not implemented yet)

vm [boolean] if True, include variance-covariance matrix in summary results

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regimes variable for use in output

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

```
>>> import numpy as np
>>> import libpysal
>>> db = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM", "AGE", "SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
```

Since in this example we are interested in checking whether the results vary by regimes, we use CITCOU to define whether the location is in the city or outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

```
>>> mlerr = ML_Error_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names,
        name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mlerr.betas, decimals=4)
array([[ -2.3949],
       [ 4.8738],
       [ -0.0291],
         0.3328],
       [
       [ 31.7962],
       [ 2.981 ],
       [ -0.2371],
       [ 0.8058],
       [ 0.6177]])
>>> "{0:.6f}".format(mlerr.lam)
'0.617707'
>>> "{0:.6f}".format(mlerr.mean_y)
'44.307180'
>>> "{0:.6f}".format(mlerr.std_y)
'23.606077'
>>> np.around(mlerr.vml, decimals=4)
       [ 0.005, -0.3535],
[ -0.3535, 441.3039]])
array([[
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([ 58.5055, 2.4295, 0.0072,
                                        0.0639, 80.5925,
                                                            3.161 ,
         0.012, 0.0499,
                            0.005 ])
>>> np.around(mlerr.sig2, decimals=4)
array([[ 209.6064]])
>>> "{0:.6f}".format(mlerr.logll)
'-870.333106'
>>> "{0:.6f}".format(mlerr.aic)
'1756.666212'
>>> "{0:.6f}".format(mlerr.schwarz)
'1783.481077'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES (METHOD = full)'
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] (k+1)x1 array of estimated coefficients (lambda last)

- **lam** [float] estimate of spatial autoregressive coefficient Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **u** [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

n [integer] Number of observations

- **k** [integer] Number of variables for which coefficients are estimated (including the constant, excluding the rho) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **method** [string] log Jacobian method. if 'full': brute force (full matrix computations) if 'ord', Ord eigenvalue computation if 'LU', LU sparse matrix decomposition
- **epsilon** [float] tolerance criterion used in minimize_scalar function and inverse_product
- **mean_y** [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (k+1 x k+1), all coefficients
- **vm1** [array] variance covariance matrix for lambda, sigma (2 x 2) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **logll** [float] maximized log-likelihood (including constant terms) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a

list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

- regime_lag_sep: boolean If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- kf [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- **nr** [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

get_x_lag

__init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, *spat_diag=False*, name_y=None, name_x=None, name_w=None, name ds=None, name regimes=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

<pre>init(self, y, x, regimes[, w,])</pre>	Initialize self.	
<pre>get_x_lag(self, w, regimes_att)</pre>		

Attributes

mean_y	
sig2n	
sig2n_k	
std_y	
utu	
Vm	

3.16.4 spreg.GM_Lag_Regimes

class spreg.GM_Lag_Regimes	(y, x, regimes,	, yend=None,	q=None, w=	=None, w_lags=1,
	lag_q=True,	robust=None,	gwk=None,	sig2n_k=False,
	spat_diag=False,	constant_	regi='many',	cols2regi='all',
	regime_lag_sep=	False, regim	ne_err_sep=True	e, cores=False,
	vm=False, nan	ne_y=None, ne	ame_x=None,	name_yend=None,
	name_q=None,	name_regi	mes=None,	name_w=None,
	name_gwk=None	, name_ds=None	·)	
C			,	

Spatial two stage least squares (S2SLS) with regimes; [Ans88]

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x); cannot be used in combination with h
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- w [pysal W object] Spatial weights object
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **regime_lag_sep: boolean** If True (default), the spatial parameter for spatial lag is also computed according to different regimes. If False, the spatial parameter is fixed accross regimes. Option valid only when regime_err_sep=True
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- **robust** [string] If 'white', then a White consistent estimator of the variance-covariance matrix is given. If 'hac', then a HAC consistent estimator of the variance-covariance matrix is given. If 'ogmm', then Optimal GMM is used to estimate betas and the variance-covariance matrix. Default set to None.
- **gwk** [pysal W object] Kernel spatial weights needed for HAC estimation. Note: matrix must have ones along the main diagonal.
- sig2n_k [boolean] If True, then use n-k to estimate sigma^2. If False, use n.

spat_diag [boolean] If True, then compute Anselin-Kelejian test

vm [boolean] If True, include variance-covariance matrix in summary results

- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_gwk [string] Name of kernel weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regimes variable for use in output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> from libpysal import weights
>>> w = weights.Rook.from_shapefile(examples.get_path("NAT.shp"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

This class runs a lag model, which means that includes the spatial lag of the dependent variable on the right-hand side of the equation. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once the model is run, we can have a summary of the output by typing: model.summary . Alternatively, we can obtain the standard error of the coefficient estimates by calling:

In the example above, all coefficients but the spatial lag vary according to the regime. It is also possible to have the spatial lag varying according to the regime, which effective will result in an independent spatial lag model estimated for each regime. To run these models, the argument regime_lag_sep must be set to True:

Alternatively, we can type: 'model.summary' to see the organized results output. The class is flexible enough to accomodate a spatial lag model that, besides the spatial lag of the dependent variable, includes other non-spatial endogenous regressors. As an example, we will add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
```

(continues on next page)

(continued from previous page)

>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And we can run the model again:

```
>>> model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, regime_lag_sep=False,

    regime_err_sep=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_

    ·var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')

>>> model.betas

array([[ 3.42195202],

    [ 1.03311878],

    [ 0.14308741],

    [ 8.99740066],

    [ 1.91877758],

    [-0.32084816],

    [ 2.38918212],

    [ 3.67243761],

    [ 0.06959139]])
```

Once the model is run, we can obtain the standard error of the coefficient estimates. Alternatively, we can have a summary of the output by typing: model.summary

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **kstar** [integer] Number of endogenous variables. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **h** [array] nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **robust** [string] Adjustment for robust standard errors Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **mean_y** [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- utu [float] Sum of squared residuals
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **ak_test** [tuple] Anselin-Kelejian test; tuple contains the pair (statistic, p-value) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_yend** [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output
- **name_q** [list of strings] Names of external instruments
- name_h [list of strings] Names of all instruments used in ouput
- **name_w** [string] Name of weights matrix for use in output
- name_gwk [string] Name of kernel weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2n [float] Sigma squared (computed with n in the denominator)
- sig2n_k [float] Sigma squared (computed with n-k in the denominator)
- **hth** [float] H'H. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- **hthi** [float] $(H'H)^{-1}$. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **varb** [array] $(Z'H(H'H)^{-1}H'Z)^{-1}$. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **zthhthi** [array] $Z'H(H'H)^{-1}$. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **pfora1a2** [array] n(zthhthi)'varb Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime.
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

GM_Lag_Regimes_Multi	
sp_att_reg	

__init___(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

GM_Lag_Regimes_Multi(self, y, x, w_i, w,)	
init(self, y, x, regimes[, yend, q, w,])	Initialize self.
<pre>sp_att_reg(self, w_i, regi_ids, wy)</pre>	

Attributes

pforala2	
sig2n sig2n_k std_y	
sig2n_k	
std_y	
utu	
VM	

3.16.5 spreg.GM_Error_Regimes

GMM method for a spatial error model with regimes, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string, optional** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.

regime_lag_sep: boolean Always False, kept for consistency, ignored.

vm [boolean] If True, include variance-covariance matrix in summary results

cores [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

name_y [string] Name of dependent variable for use in output
name_x [list of strings] Names of independent variables for use in output
name_w [string] Name of weights matrix for use in output
name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = ['Var1', 'Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print model.name x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(model.betas, decimals=6)
array([[ 0.074807],
       [ 0.786107],
       [ 0.538849],
       [ 5.103756],
       [ 1.196009],
       [ 0.600533],
       [0.364103]])
>>> np.around(model.std_err, decimals=6)
array([ 0.379864, 0.152316, 0.051942, 0.471285, 0.19867, 0.057252])
>>> np.around(model.z_stat, decimals=6)
array([[ 0.196932,
                      0.8438811,
                              ],
         5.161042,
                      0.
       [ 10.37397 ,
                      0.
                              ],
       [ 10.829455,
                      0.
                              ],
         6.02007 ,
                      0.
       ſ
                              ],
       [ 10.489215,
                      Ο.
                              ]])
>>> np.around(model.sig2, decimals=6)
28.172732
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- u [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals
- predy [array] nx1 array of predicted y values
- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y [float] Mean of dependent variable

- std_y [float] Standard deviation of dependent variable
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **vm** [array] Variance covariance matrix (kxk)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- std_err [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regime variable for use in the output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

Attributes

mean_y			
std_y			

3.16.6 spreg.GM_Error_Het_Regimes

GMM method for a spatial error model with heteroskedasticity and regimes; based on Arraiz et al [ADKP10], following Anselin [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime (default)
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.

regime_lag_sep: boolean Always False, kept for consistency, ignored.

- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from Arraiz et al. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from Arraiz et al. Note: max_iter provides an additional stop condition.

step1c [boolean] If True, then include Step 1c from Arraiz et al.

vm [boolean] If True, include variance-covariance matrix in summary results

- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- **name_y** [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print reg.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(reg.betas, decimals=6)
array([[ 0.009121],
      [ 0.812973],
      [ 0.549355],
      [ 5.00279 ],
      [ 1.200929],
      [ 0.614681],
      [ 0.429277]])
>>> np.around(reg.std_err, decimals=6)
array([ 0.355844, 0.221743, 0.059276, 0.686764, 0.35843, 0.092788,
      0.02524 ])
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y [float] Mean of dependent variable

- std_y [float] Standard deviation of dependent variable
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **vm** [array] Variance covariance matrix (kxk)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- std_err [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regime variable for use in the output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes
 - 'many': a vector of ones is appended to x and considered different per regime
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

__init__(self, y, x, regimes, w[, max_iter, ...]) Initialize self.

Attributes

mean_y			
std_y			

3.16.7 spreg.GM_Error_Hom_Regimes

class spreg.GM_Error_Hom_Regimes (y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

GMM method for a spatial error model with homoskedasticity, with regimes, results and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.

regime_lag_sep: boolean Always False, kept for consistency, ignored.

- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.

- A1 [string] If A1='het', then the matrix A1 is defined as in [ADKP10]. If A1='hom', then as in [Ans11]. If A1='hom_sc', then as in [DEP13] and [DPR13].
- vm [boolean] If True, include variance-covariance matrix in summary results
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = ['Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. This is why you obtain as many coefficient estimates as standard errors, which you calculate taking the square root of the diagonal of the variance-covariance matrix of the parameters. Alternatively, we can have a summary of the output by typing: model.summary >>> print reg.name_x ['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']

```
>>> print np.around(reg.betas,4)
[[ 0.069 ]
[ 0.7885]
[ 0.5398]
[ 5.0948]
[ 1.1965]
[ 0.6018]
[ 0.4104]]
```

```
>>> print np.sqrt(reg.vm.diagonal())
[ 0.39105854 0.15664624 0.05254328 0.48379958 0.20018799 0.05834139
            0.01882401]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y [float] Mean of dependent variable

- std_y [float] Standard deviation of dependent variable
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- vm [array] Variance covariance matrix (kxk)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **xtx** [float] X'X. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **name_y** [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regime variable for use in the output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi: string** Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

regime_err_sep: boolean If True, a separate regression is run for each regime.

- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- **nr** [int] Number of different regimes in the 'regimes' list

- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression
- __init___(self, y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

Attributes

mean_y			
std_y			

3.16.8 spreg.GM_Combo_Regimes

GMM method for a spatial lag and error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- w [pysal W object] Spatial weights object (always needed)
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.

regime_err_sep: boolean If True, a separate regression is run for each regime.

- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- vm [boolean] If True, include variance-covariance matrix in summary results
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- **name_y** [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = ['Var1', 'Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial lag model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the spatial lag of the dependent variable. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

And lambda:

```
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [ 0.6136]
```

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

```
>>> model = GM_Combo_Regimes(y, x, regimes, yd, q, w=w, name_y=y_var, name_x=x_
→var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', '_Global_W_HR90', 'lambda']
>>> print model.betas
[[ 3.41963782]
[ 1.04065841]
[ 0.16634393]
[ 8.86544628]
[ 1.85120528]
[-0.24908469]
[ 2.43014046]
[ 3.61645481]
[ 0.03308671]
[ 0.18684992]]
>>> print np.sqrt(model.vm.diagonal())
0.53067577 0.13271426 0.06058025
                                     0.76406411 0.17969783 0.07167421
 0.28943121 0.25308326 0.06126529]
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [ 0.1868]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

mean_y [float] Mean of dependent variable

- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2 [float] Sigma squared used in computations (based on filtered residuals) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **name_y** [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

- **name_z** [list of strings] Names of exogenous and endogenous variables for use in output
- name_q [list of strings] Names of external instruments
- name_h [list of strings] Names of all instruments used in ouput
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [string] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed accross regimes.

- **kr** [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

<pre>init(self, y, x, regimes[, yend, q, w,])</pre>	Initialize self.

Attributes

mean_y			
std_y			

3.16.9 spreg.GM_Combo_Hom_Regimes

<pre>class spreg.GM_Combo_Hom_Regimes</pre>	(y, x, regimes, yend=None, q=None, w=None, w_lags=1,
	lag_q=True, cores=False, max_iter=1, epsilon=1e-
	05, A1='het', constant_regi='many', cols2regi='all',
	regime_err_sep=False, regime_lag_sep=False, vm=False,
	name_y=None, name_x=None, name_yend=None,
	name_q=None, name_w=None, name_ds=None,
	name_regimes=None)

GMM method for a spatial lag and error model with homoskedasticity, regimes and endogenous variables, with results and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **w** [pysal W object] Spatial weights object (always needed)

- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- **regime_lag_sep** [boolean] If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes.
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- **A1** [string] If A1='het', then the matrix A1 is defined as in [ADKP10]. If A1='hom', then as in [Ans11]. If A1='hom_sc', then as in [DEP13] and [DPR13].
- vm [boolean] If True, include variance-covariance matrix in summary results
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial combo model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

```
>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp
___"))
```

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

(continues on next page)

(continued from previous page)

[0.5658]			
[9.1129]			
[1.1339]			
[0.6517]			
[-0.4583]			
[0.6634]]			

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And then we can run and explore the model analogously to the previous combo:

```
>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, yd, q, w=w, A1='hom_sc', name_y=y_
→var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds=
\leftrightarrow 'NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', '_Global_W_HR90', 'lambda']
>>> print req.betas
[[ 3.4196478 ]
[ 1.04065595]
[ 0.16630304]
 [ 8.86570777]
 [ 1.85134286]
 [-0.24921597]
 [ 2.43007651]
[ 3.61656899]
[ 0.03315061]
[ 0.22636055]]
>>> print np.sqrt(reg.vm.diagonal())
[ 0.53989913 0.13506086 0.06143434 0.77049956 0.18089997 0.07246848
 0.29218837 0.25378655 0.06184801 0.06323236]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [ 0.2264]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

u [array] nx1 array of residuals

e_filtered [array] nx1 array of spatially filtered residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **h** [array] nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iteration** [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- **vm** [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2 [float] Sigma squared used in computations (based on filtered residuals) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output
- name_q [list of strings] Names of external instruments
- name_h [list of strings] Names of all instruments used in ouput
- **name_w** [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [string] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- **regime_lag_sep** [boolean] If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression
- __init___(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None) Initialize self. See help(type(self)) for accurate signature.

Methods

	Initialize self.
--	------------------

Attributes

mear	л_У
std	V

3.16.10 spreg.GM_Combo_Het_Regimes

class spreg.GM_Combo_Het_Regimes(y, regimes, х, yend=None, q=None, w=None. $w_{lags=1}$, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, *name_x=None*, name_yend=None, name_q=None, *name_w=None*, *name_ds=None*, *name_regimes=None*)

GMM method for a spatial lag and error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object (always needed)
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- **regime_lag_sep** [boolean] If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes.
- w_lags [integer] Orders of W to include as instruments for the spatially lagged dependent variable. For example, w_lags=1, then instruments are WX; if w_lags=2, then WX, WWX; and so on.
- **lag_q** [boolean] If True, then include spatial lags of the additional instruments (q).
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- step1c [boolean] If True, then include Step 1c from [ADKP10].
- **inv_method** [string] If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm [boolean] If True, include variance-covariance matrix in summary results

cores [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial combo model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model. In this case we will run a simple version of that, where we have the spatial effects as well as exogenous variables. Since it is a spatial model, we have to pass in the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional. We can have a summary of the output by typing: model.summary Alternatively, we can check the betas:

This class also allows the user to run a spatial lag+error model with the extra feature of including non-spatial endogenous regressors. This means that, in addition to the spatial lag and error, we consider some of the variables on the right-hand side of the equation as endogenous and we instrument for this. In this case we consider RD90 (resource deprivation) as an endogenous regressor. We use FP89 (families below poverty) for this and hence put it in the instruments parameter, 'q'.

```
>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

And then we can run and explore the model analogously to the previous combo:

(continues on next page)

(continued from previous page)

```
[-0.24545394]
[ 2.43189808]
[ 3.61328423]
[ 0.03132164]
[ 0.29544224]]
>>> print np.sqrt(reg.vm.diagonal())
[ 0.53103804      0.20835827      0.05755679      1.00496234      0.34332131      0.10259525
      0.3454436      0.37932794      0.07611667      0.07067059]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [ 0.2954]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

e_pred [array] nx1 array of residuals (using reduced form)

predy [array] nx1 array of predicted y values

predy_e [array] nx1 array of predicted y values (using reduced form)

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **h** [array] nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- **vm** [array] Variance covariance matrix (kxk)

- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- pr2_e [float] Pseudo R squared (squared correlation between y and ypred_e (using reduced form)) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- **name_z** [list of strings] Names of exogenous and endogenous variables for use in output
- **name_q** [list of strings] Names of external instruments
- name_h [list of strings] Names of all instruments used in ouput
- name_w [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- **name_regimes** [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [string] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- **regime_err_sep: boolean** If True, a separate regression is run for each regime.
- **regime_lag_sep: boolean** If True, the spatial parameter for spatial lag is also computed according to different regimes. If False (default), the spatial parameter is fixed across regimes.
- kr [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list

multi [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

__init__ (self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None) Initialize self. See help(type(self)) for accurate signature.

Methods

Attributes

mean_y
std_y

3.16.11 spreg.GM_Endog_Error_Regimes

class	spreg.GM_Endog_	_Error_Reg	j imes (y,	х,	yend,	q,	regimes,	w,	cores=False,
			vm	=False,	con	stant_r	egi='many',	,	cols2regi='all',
			regi	ime_eri	r_sep=Fe	alse,	reg	ime_	_lag_sep=False,
			nan	ne_y=N	lone,	name_	x=None,	nar	ne_yend=None,
			nan	$ne_q=N$	lone,	name	e_w=None,	1	name_ds=None,
			nan	ne regi	mes=No	ne. sun	nm=True, ad	ld la	g = False

GMM method for a spatial error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant

yend [array] Two dimensional array with n rows and one column for each endogenous variable

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating

for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.

regime_err_sep: boolean If True, a separate regression is run for each regime.

regime_lag_sep: boolean Always False, kept for consistency, ignored.

vm [boolean] If True, include variance-covariance matrix in summary results

cores [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.

name_y [string] Name of dependent variable for use in output

name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. Note that because we are running the classical GMM error model from 1998/99, the spatial parameter is obtained as a point estimate, so although you get a value for it (there are for coefficients under model.betas), you cannot perform inference on it (there are only three values in model.se_betas). Also, this regression uses a two stage least squares estimation method that accounts for the endogeneity created by the endogenous variables included. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', 'lambda']
>>> np.around(model.betas, decimals=5)
array([[ 3.59718],
      [ 1.0652 ],
       [ 0.15822],
      [ 9.19754],
       [ 1.88082],
       [-0.24878],
       [ 2.46161],
       [ 3.57943],
       [ 0.25564]])
>>> np.around(model.std_err, decimals=6)
array([ 0.522633, 0.137555, 0.063054, 0.473654, 0.18335, 0.072786,
        0.300711, 0.2404131)
```

Attributes

- **summary** [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)
- betas [array] kx1 array of estimated coefficients
- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals
- predy [array] nx1 array of predicted y values
- n [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **mean_y** [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **sig2** [float] Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details) Sigma squared used in computations
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **name_y** [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output
- name_q [list of strings] Names of external instruments
- **name_h** [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regimes variable for use in output

- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [['one', 'many']] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep: boolean If True, a separate regression is run for each regime.
- **kr** [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Initialize self. See help(type(self)) for accurate signature.

Methods

_init__(self, y, x, yend, q, regimes, w[, ...]) Initialize self.

Attributes

mean_y			
std_y			

3.16.12 spreg.GM_Endog_Error_Hom_Regimes

GMM method for a spatial error model with homoskedasticity, regimes and endogenous variables. Based on Drukker et al. (2013) [DEP13], following Anselin (2011) [Ans11].

Parameters

- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- regime_lag_sep [boolean] Always False, kept for consistency, ignored.
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- A1 [string] If A1='het', then the matrix A1 is defined as in [ADKP10]. If A1='hom', then as in [Ans11]. If A1='hom_sc', then as in [DEP13] and [DPR13].
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- **name_y** [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [`Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that assumes homoskedasticity but that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix. Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_
→RD90', 'lambda']
```

```
>>> print np.around(reg.betas,4)
[[ 3.5973]
[ 1.0652]
[ 0.1582]
[ 9.198 ]
[ 1.8809]
[-0.2489]
[ 2.4616]
[ 3.5796]
[ 0.2541]]
```

```
>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5204 0.1371 0.0629 0.4721 0.1824 0.0725 0.2992 0.2395 0.024 ]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- **u** [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals

predy [array] nx1 array of predicted y values

- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable

- x [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **h** [array] nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iteration** [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- vm [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- sig2 [float] Sigma squared used in computations Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **hth** [float] H'H. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **name_y** [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output
- **name_q** [list of strings] Names of external instruments
- **name_h** [list of strings] Names of all instruments used in ouput

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regimes variable for use in output

title [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [['one', 'many']] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- **kr** [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression

Methods

__init__(self, y, x, yend, q, regimes, w[, ...]) Initialize self.

Attributes

mean_y			
std_y			

3.16.13 spreg.GM_Endog_Error_Het_Regimes

<pre>class spreg.GM_Endog_Error_Het_Regimes</pre>	(y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-
	05, step1c=False, constant_regi='many',
	cols2regi='all', regime_err_sep=False,
	regime_lag_sep=False, inv_method='power_exp',
	cores=False, vm=False, name_y=None,
	name_x=None, name_yend=None,
	name_q=None, name_w=None, name_ds=None,
	name_regimes=None, summ=True, add_lag=False)
GMM method for a spatial error model with hetero	oskedasticity, regimes and endogenous variables, with results

and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].

Parameters

- **y** [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, excluding the constant
- yend [array] Two dimensional array with n rows and one column for each endogenous variable
- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable to use as instruments (note: this should not contain any variables from x)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- w [pysal W object] Spatial weights object
- **constant_regi: string** Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all' (default), all the variables vary by regime.
- regime_err_sep [boolean] If True, a separate regression is run for each regime.
- regime_lag_sep [boolean] Always False, kept for consistency, ignored.
- **max_iter** [int] Maximum number of iterations of steps 2a and 2b from [ADKP10]. Note: epsilon provides an additional stop condition.
- **epsilon** [float] Minimum change in lambda required to stop iterations of steps 2a and 2b from [ADKP10]. Note: max_iter provides an additional stop condition.
- step1c [boolean] If True, then include Step 1c from [ADKP10].
- **inv_method** [string] If "power_exp", then compute inverse using the power expansion. If "true_inv", then compute the true inverse. Note that true_inv will fail for large n.
- vm [boolean] If True, include variance-covariance matrix in summary results
- **cores** [boolean] Specifies if multiprocessing is to be used Default: no multiprocessing, cores = False Note: Multiprocessing may not work on all platforms.
- **name_y** [string] Name of dependent variable for use in output
- name_x [list of strings] Names of independent variables for use in output

name_yend [list of strings] Names of endogenous variables for use in output

name_q [list of strings] Names of instruments for use in output

name_w [string] Name of weights matrix for use in output

name_ds [string] Name of dataset for use in output

name_regimes [string] Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the data we read into arrays that spreg understands and pysal to perform all the analysis.

```
>>> import numpy as np
>>> import libpysal
```

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')
```

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)
```

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from the DBF to be used as independent variables in the regression. Other variables can be inserted by adding their names to x_var, such as $x_var = [Var1', Var2', ...]$ Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in.

```
>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T
```

For the endogenous models, we add the endogenous variable RD90 (resource deprivation) and we decide to instrument for it with FP89 (families below poverty):

```
>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T
```

The different regimes in this data are given according to the North and South dummy (SOUTH).

```
>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)
```

Since we want to run a spatial error model, we need to specify the spatial weights matrix that includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from NAT.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

```
>>> w.transform = 'r'
```

We are all set with the preliminaries, we are good to run the model. In this case, we will need the variables (exogenous and endogenous), the instruments and the weights matrix. If we want to have the names of the variables printed in the output summary, we will have to pass them in as well, although this is optional.

Once we have run the model, we can explore a little bit the output. The regression object we have created has many attributes so take your time to discover them. This class offers an error model that explicitly accounts for heteroskedasticity and that unlike the models from spreg.error_sp, it allows for inference on the spatial parameter. Hence, we find the same number of betas as of standard errors, which we calculate taking the square root of the diagonal of the variance-covariance matrix Alternatively, we can have a summary of the output by typing: model.summary

```
>>> print np.around(reg.betas,4)
[[ 3.5944]
[ 1.065 ]
[ 0.1587]
[ 9.184 ]
[ 1.8784]
[-0.2466]
[ 2.4617]
[ 3.5756]
[ 0.2908]]
```

```
>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5043 0.2132 0.0581 0.6681 0.3504 0.0999 0.3686 0.3402 0.028 ]
```

Attributes

summary [string] Summary of regression results and diagnostics (note: use in conjunction with the print command)

betas [array] kx1 array of estimated coefficients

- u [array] nx1 array of residuals
- e_filtered [array] nx1 array of spatially filtered residuals
- predy [array] nx1 array of predicted y values
- **n** [integer] Number of observations
- **k** [integer] Number of variables for which coefficients are estimated (including the constant). Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- y [array] nx1 array for dependent variable
- **x** [array] Two dimensional array with n rows and one column for each independent (exogenous) variable, including the constant Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **yend** [array] Two dimensional array with n rows and one column for each endogenous variable Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)

- **q** [array] Two dimensional array with n rows and one column for each external exogenous variable used as instruments Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **z** [array] nxk array of variables (combination of x and yend) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **h** [array] nxl array of instruments (combination of x and q) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **iter_stop** [string] Stop criterion reached during iteration of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- iteration [integer] Number of iterations of steps 2a and 2b from [ADKP10]. Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- mean_y [float] Mean of dependent variable
- std_y [float] Standard deviation of dependent variable
- **vm** [array] Variance covariance matrix (kxk)
- pr2 [float] Pseudo R squared (squared correlation between y and ypred) Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **std_err** [array] 1xk array of standard errors of the betas Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- z_stat [list of tuples] z statistic; each tuple contains the pair (statistic, p-value), where each is a float Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- name_y [string] Name of dependent variable for use in output
- **name_x** [list of strings] Names of independent variables for use in output
- name_yend [list of strings] Names of endogenous variables for use in output
- name_z [list of strings] Names of exogenous and endogenous variables for use in output
- name_q [list of strings] Names of external instruments
- name_h [list of strings] Names of all instruments used in ouput
- **name_w** [string] Name of weights matrix for use in output
- name_ds [string] Name of dataset for use in output
- name_regimes [string] Name of regimes variable for use in output
- **title** [string] Name of the regression method used Only available in dictionary 'multi' when multiple regressions (see 'multi' below for details)
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- **constant_regi** [string] Ignored if regimes=False. Constant option for regimes. Switcher controlling the constant term setup. It may take the following values:
 - 'one': a vector of ones is appended to x and held constant across regimes.
 - 'many': a vector of ones is appended to x and considered different per regime (default).
- **cols2regi** [list, 'all'] Ignored if regimes=False. Argument indicating whether each column of x should be considered as different per regime or held constant across regimes (False). If a

list, k booleans indicating for each variable the option (True if one per regime, False to be held constant). If 'all', all the variables vary by regime.

- **regime_err_sep** [boolean] If True, a separate regression is run for each regime.
- **kr** [int] Number of variables/columns to be "regimized" or subject to change by regime. These will result in one parameter estimate by regime for each variable (i.e. nr parameters per variable)
- **kf** [int] Number of variables/columns to be considered fixed or global across regimes and hence only obtain one parameter estimate
- nr [int] Number of different regimes in the 'regimes' list
- **multi** [dictionary] Only available when multiple regressions are estimated, i.e. when regime_err_sep=True and no variable is fixed across regimes. Contains all attributes of each individual regression
- __init__ (self, y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

Initialize self. See help(type(self)) for accurate signature.

Methods

Attributes

mean_y			
std_y			

3.17 Seemingly-Unrelated Regressions

Seeimingly-unrelated regression models are a generalization of linear regression. These models (and their spatial generalizations) allow for correlation in the residual terms between groups that use the same model. In spatial Seeimingly-Unrelated Regressions, the error terms across groups are allowed to exhibit a structured type of correlation: spatial correlation.

<pre>spreg.SUR(bigy, bigX[, w, regimes,])</pre>	User class for SUR estimation, both two step as well as iterated
<pre>spreg.SURerrorGM(bigy, bigX, w[, regimes,])</pre>	User class for SUR Error estimation by Maximum Like-
	lihood
<pre>spreg.SURerrorML(bigy, bigX, w[, regimes,])</pre>	User class for SUR Error estimation by Maximum Like-
	lihood
<pre>spreg.SURlagIV(bigy, bigX[, bigyend, bigq,])</pre>	User class for spatial lag estimation using IV
<pre>spreg.ThreeSLS(bigy, bigX, bigyend, bigq[,])</pre>	User class for 3SLS estimation

3.17.1 spreg.SUR

User class for SUR estimation, both two step as well as iterated

Parameters

bigy [dictionary] with vector for dependent variable by equation

- **bigX** [dictionary] with matrix of explanatory variables by equation (note, already includes constant term)
- **w** [spatial weights object] default = None
- **regimes** [list] default = None. List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.
- nonspat_diag: boolean flag for non-spatial diagnostics, default = True

spat_diag [boolean] flag for spatial diagnostics, default = False

iter [boolean] whether or not to use iterated estimation. default = False

- **maxiter** [int] maximum iterations; default = 5
- **epsilon** [float] precision criterion to end iterations. default = 0.00001
- **verbose** [boolean] flag to print out iteration number and value of log det(sig) at the beginning and the end of the iteration
- name_bigy [dictionary] with name of dependent variable for each equation. default = None, but should be specified is done when sur_stackxy is used
- name_bigX [dictionary] with names of explanatory variables for each equation. default = None, but should be specified is done when sur_stackxy is used
- **name_ds** [string] name for the data set
- name_w [string] name for the weights file

name_regimes [string] name of regime variable for use in the output

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. In this example, equation 1 has HR80 as dependent variable and PS80 and UE80 as exogenous regressors. For equation 2, HR90 is the dependent variable, and PS90 and UE90 the exogenous regressors.

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
```

Although not required for this method, we can load a weights matrix file to allow for spatial diagnostics.

The SUR method requires data to be provided as dictionaries. PySAL provides the tool sur_dictxy to create these dictionaries from the list of variables. The line below will create four dictionaries containing respectively the dependent variables (bigy), the regressors (bigX), the dependent variables' names (bigyvars) and regressors' names (bigXvars). All these will be created from th database (db) and lists of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

We can now run the regression and then have a summary of the output by typing: 'print(reg.summary)'

```
>>> reg = SUR(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,spat_diag=True,
\rightarrow name ds="nat")
>>> print(req.summary)
REGRESSION
_____
SUMMARY OF OUTPUT: SEEMINGLY UNRELATED REGRESSIONS (SUR)
_____
Data set : nat
Weights matrix : unknown
Number of Equations : 2
                                           Number of Observations:
→3085
Log likelihood (SUR): -19902.966
                                          Number of Iterations :
→ 1
_____
SUMMARY OF EOUATION 1
_____
Dependent Variable :
                        HR80
                                          Number of Variables :
                                                                       .....
→ 3
Mean dependent var : 6.9276
                                          Degrees of Freedom
                                                              :
→3082
S.D. dependent var :
                      6.8251
          Variable Coefficient
                                    Std.Error z-Statistic
⊶Probability
        Constant_1 5.1390718
                                    0.2624673 19.5798587 0.
↔0000000
              PS80 0.6776481 0.1219578 5.5564132 0.
<u>→</u>0000000
             UE80 0.2637240 0.0343184 7.6846277
                                                                  0.
\hookrightarrow 0000000
<u>→</u> - -
SUMMARY OF EQUATION 2
_____
                        HR90
                                           Number of Variables
Dependent Variable :
→ 3
```

(continues on next page)

Mean dependen		C_1000	Demos	(continue		
⇔3082	t var :	6.1829	Degree	es of Freedom	:	
S.D. dependen	t var :	6.6403				
↔ V	ariable	Coefficient	Std.Error	z-Statistic		
⇔Probability						
↔						
Con ⇔0000000	stant_2	3.6139403	0.2534996	14.2561949		0.
→0000000	PS90	1.0260715	0.1121662	9.1477755		0.
	UE90	0.3865499	0.0341996	11.3027760		0.
$\hookrightarrow 0000000$						
		LM test on Sigma LR test on Sigma	DF 1 1			PROB 0.0000 0.0000
		LR LEST ON SIGMA	Ţ	/00.303		0.0000
OTHER DIAGNOS	TICS - CHO	W TEST BETWEEN EQUA				
	Cong	VARIABLES tant_1, Constant_2		VALUE 26.729		PROB 0.0000
	CONS		1	20.729		0.0000
		PS80 PS90	1	8 241		0 0041
		PS80, PS90 UE80, UE90	1 1	8.241 9.384		0.0041 0.0022
DIAGNOSTICS F	OR SPATIAL	UE80, UE90 DEPENDENCE				
DIAGNOSTICS F TEST		UE80, UE90 DEPENDENCE DF	1 VALUE	9.384		
TEST Lagrange Mult	iplier (er	UE80, UE90 DEPENDENCE DF ror) 2	1 VALUE 1333.586	9.384 PROB 0.0000		
TEST Lagrange Mult	iplier (er	UE80, UE90 DEPENDENCE DF ror) 2	1 VALUE	9.384 PROB 0.0000		
IEST Lagrange Mult Lagrange Mult	iplier (er iplier (la	UE80, UE90 DEPENDENCE DF ror) 2 g) 2	1 VALUE 1333.586	9.384 PROB 0.0000		
IEST Lagrange Mult Lagrange Mult ERROR CORRELA EQUATION 1	iplier (er iplier (la TION MATRI EQUATION	UE80, UE90 DEPENDENCE DF ror) 2 g) 2 X 2	1 VALUE 1333.586	9.384 PROB 0.0000		
TEST Lagrange Mult Lagrange Mult ERROR CORRELA EQUATION 1 1.000000	iplier (er iplier (la TION MATRI EQUATION 0.46954	UE80, UE90 DEPENDENCE Tor) 2 g) 2 X 2 8	1 VALUE 1333.586	9.384 PROB 0.0000		
TEST Lagrange Mult Lagrange Mult ERROR CORRELA EQUATION 1 1.000000 0.469548	iplier (er iplier (la TION MATRI EQUATION 0.46954 1.00000	UE80, UE90 DEPENDENCE Tor) 2 g) 2 X 2 8	1 VALUE 1333.586 1275.821	9.384 PROB 0.0000		

Attributes

bigy [dictionary] with y values **bigX** [dictionary] with X values **bigXX** [dictionary] with $X'_t X_r$ cross-products **bigXy** [dictionary] with $X'_t y_r$ cross-products **n_eq** [int] number of equations **n** [int] number of equations in each cross-section **bigK** [array] vector with number of explanatory variables (including constant) for each equation **bOLS** [dictionary] with OLS regression coefficients for each equation olsE [array] N x n_eq array with OLS residuals for each equation

bSUR [dictionary] with SUR regression coefficients for each equation

varb [array] variance-covariance matrix

bigE [array] n by n_eq array of residuals

sig_ols [array] Sigma matrix for OLS residuals (diagonal)

ldetS0 [float] log det(Sigma) for null model (OLS by equation)

niter [int] number of iterations (=0 for iter=False)

corr [array] inter-equation error correlation matrix

llik [float] log-likelihood (including the constant pi)

sur_inf [dictionary] with standard error, asymptotic t and p-value, one for each equation

- **lrtest** [tuple] Likelihood Ratio test on off-diagonal elements of sigma (tuple with test,df,p-value)
- **Imtest** [tuple] Lagrange Multipler test on off-diagonal elements of sigma (tuple with test,df,p-value)
- **ImEtest** [tuple] Lagrange Multiplier test on error spatial autocorrelation in SUR (tuple with test, df, p-value)
- **Imlagtest** [tuple] Lagrange Multiplier test on spatial lag autocorrelation in SUR (tuple with test, df, p-value)
- **surchow** [array] list with tuples for Chow test on regression coefficients. each tuple contains test value, degrees of freedom, p-value
- name_bigy [dictionary] with name of dependent variable for each equation
- name_bigX [dictionary] with names of explanatory variables for each equation
- **name_ds** [string] name for the data set

name_w [string] name for the weights file

name_regimes [string] name of regime variable for use in the output

Methods

3.17.2 spreg.SURerrorGM

class spreg.**SURerrorGM**(*bigy*, *bigX*, *w*, *regimes=None*, *nonspat_diag=True*, *spat_diag=False*, *vm=False*, *name_bigy=None*, *name_bigX=None*, *name_ds=None*, *name_w=None*, *name_regimes=None*)

User class for SUR Error estimation by Maximum Likelihood

Parameters

bigy [dictionary] with vectors of dependent variable, one for each equation

bigX [dictionary] with matrices of explanatory variables, one for each equation

- w [spatial weights object]
- **regimes** [list] List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

nonspat_diag [boolean] flag for non-spatial diagnostics, default = False

spat_diag [boolean] flag for spatial diagnostics, default = False (to be implemented)

- vm [boolean] flag for asymptotic variance for lambda and Sigma, default = False (to be implemented)
- name_bigy [dictionary] with name of dependent variable for each equation. default = None, but should be specified is done when sur_stackxy is used
- name_bigX [dictionary] with names of explanatory variables for each equation. default = None, but should be specified is done when sur_stackxy is used

name_ds [string] name for the data set

name_w [string] name for the weights file

name_regimes [string] name of regime variable for use in the output

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). This is the DBF associated with the NAT shapefile. Note that pysal.open() also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. Equation 1 has HR80 as dependent variable, and PS80 and UE80 as exogenous regressors. For equation 2, HR90 is the dependent variable, and PS90 and UE90 the exogenous regressors.

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides the tool sur_dictxy to create these dictionaries from the list of variables. The line below will create four dictionaries containing respectively the dependent variables (bigy), the regressors (bigX), the dependent variables' names (bigyvars) and regressors' names (bigXvars). All these will be created from th database (db) and lists of variables (y_var and x_var) created above.

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
```

To run a spatial error model, we need to specify the spatial weights matrix. To do that, we can open an already existing gal file or create a new one. In this example, we will create a new one from NAT.shp and transform it to row-standardized.

```
>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> reg = SURerrorGM(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds=
→"NAT", name_w="nat_queen")
>>> req.bSUR
{0: array([[ 3.9774686 ],
      [ 0.8902122 ],
       [ 0.43050364]]), 1: array([[ 2.93679118],
       [ 1.11002827],
       [ 0.48761542]]) }
>>> req.sur_inf
{0: array([[ 0.37251477, 10.67734473,
                                         0.
                                                    ],
       [ 0.14224297, 6.25839157,
                                    0.
                                                1.
                       9.95985619,
       [ 0.04322388,
                                     Ο.
                                                ]]), 1: array([[ 0.33694902,
                                                                                8.
→71583239, 0.
                        ],
       [ 0.13413626, 8.27537784,
                                      Ο.
                                                ],
         0.04033105, 12.09032295,
       Γ
                                      Ο.
                                                ]])}
```

Attributes

n [int] number of observations in each cross-section

n_eq [int] number of equations

bigy [dictionary] with vectors of dependent variable, one for each equation

bigX [dictionary] with matrices of explanatory variables, one for each equation

bigK [array] n_eq x 1 array with number of explanatory variables by equation

bigylag [dictionary] spatially lagged dependent variable

bigXlag [dictionary] spatially lagged explanatory variable

lamsur [float] spatial autoregressive coefficient in ML SUR Error

bSUR [array] beta coefficients in ML SUR Error

varb [array] variance of beta coefficients in ML SUR Error

sig [array] error variance-covariance matrix in ML SUR Error

bigE [array] n by n_eq matrix of vectors of residuals for each equation

sur_inf [array] inference for regression coefficients, stand. error, t, p

surchow [array] list with tuples for Chow test on regression coefficients. each tuple contains test value, degrees of freedom, p-value

name_bigy [dictionary] with name of dependent variable for each equation

name_bigX [dictionary] with names of explanatory variables for each equation

name_ds [string] name for the data set

name_w [string] name for the weights file

name_regimes [string] name of regime variable for use in the output

_init__(self, bigX, regimes=None, nonspat diag=True, spat diag=False, bigy, *w*. vm=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, *name regimes=None*)

Initialize self. See help(type(self)) for accurate signature.

Methods

Initialize self. (self, bigy, bigX, w[, regimes, ...]) init

3.17.3 spreg.SURerrorML

class spreg.**SURerrorML**(*bigy*, *bigX*, *w*, *regimes=None*, *nonspat_diag=True*, *spat_diag=False*, epsilon=1e-07, name bigy=None, name bigX=None, vm=False, name ds=None, name w=None, name regimes=None)

User class for SUR Error estimation by Maximum Likelihood

Parameters

bigy [dictionary] with vectors of dependent variable, one for each equation

bigX [dictionary] with matrices of explanatory variables, one for each equation

w [spatial weights object]

regimes [list] default = None. List of n values with the mapping of each observation to a regime. Assumed to be aligned with 'x'.

epsilon [float] convergence criterion for ML iterations. default 0.0000001

nonspat_diag [boolean] flag for non-spatial diagnostics, default = True

spat_diag [boolean] flag for spatial diagnostics, default = False

vm [boolean] flag for asymptotic variance for lambda and Sigma, default = False

- **name_bigy** [dictionary] with name of dependent variable for each equation. default = None, but should be specified is done when sur stackxy is used
- **name_bigX** [dictionary] with names of explanatory variables for each equation. default = None, but should be specified is done when sur stackxy is used

name_ds [string] name for the data set

name w [string] name for the weights file

name_regimes [string] name of regime variable for use in the output

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. Equation 1 has HR80 as dependent variable, and PS80 and UE80 as exogenous regressors. For equation 2, HR90 is the dependent variable, and PS90 and UE90 the exogenous regressors.

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides the tool sur_dictxy to create these dictionaries from the list of variables. The line below will create four dictionaries containing respectively the dependent variables (bigy), the regressors (bigX), the dependent variables' names (bigyvars) and regressors' names (bigXvars). All these will be created from th database (db) and lists of variables (y_var and x_var) created above.

```
>>> bigy, bigX, bigyvars, bigXvars = pysal.spreg.sur_utils.sur_dictxy(db, y_var, x_var)
```

To run a spatial error model, we need to specify the spatial weights matrix. To do that, we can open an already existing gal file or create a new one. In this example, we will create a new one from NAT.shp and transform it to row-standardized.

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> req.sur_inf
{0: array([[ 0.36692181, 10.96224141,
                                           Ο.
                                                     ],
       [ 0.14129077, 6.26294579,
                                                 ],
                                     0.
                        9.93517021,
                                                 ]]), 1: array([[ 0.33139969,
       [
         0.04267954,
                                      Ο.
                                                                                  9.
→20106497,
            Ο.
                        ],
         0.13352591,
                        8.31094371,
                                      0.
       ſ
                                                 ],
          0.04004097,
                       11.756878
                                      0
                                                 ||) \}
       Γ
```

Attributes

n [int] number of observations in each cross-section

n2 [int] n/2

n_eq [int] number of equations

bigy [dictionary] with vectors of dependent variable, one for each equation

bigX [dictionary] with matrices of explanatory variables, one for each equation

bigK [array] n_eq x 1 array with number of explanatory variables by equation

bigylag [dictionary] spatially lagged dependent variable

- **bigXlag** [dictionary] spatially lagged explanatory variable
- **lamols** [array] spatial autoregressive coefficients from equation by equation ML-Error estimation
- **clikerr** [float] concentrated log-likelihood from equation by equation ML-Error estimation (no constant)
- **bSUR0** [array] SUR estimation for betas without spatial autocorrelation

llik [float] log-likelihood for classic SUR estimation (includes constant)

lamsur [float] spatial autoregressive coefficient in ML SUR Error

bSUR [array] beta coefficients in ML SUR Error

varb [array] variance of beta coefficients in ML SUR Error

sig [array] error variance-covariance matrix in ML SUR Error

bigE [array] n by n_eq matrix of vectors of residuals for each equation

cliksurerr [float] concentrated log-likelihood from ML SUR Error (no constant)

sur_inf [array] inference for regression coefficients, stand. error, t, p

errllik [float] log-likelihood for error model without SUR (with constant)

surerrllik [float] log-likelihood for SUR error model (with constant)

Irtest [tuple] likelihood ratio test for off-diagonal Sigma elements

likrlambda [tuple] likelihood ratio test on spatial autoregressive coefficients

vm [array] asymptotic variance matrix for lambda and Sigma (only for vm=True)

- **lamsetp** [array] inference for lambda, stand. error, t, p (only for vm=True)
- **lamtest** [tuple] with test for constancy of lambda across equations (test value, degrees of freedom, p-value)
- **joinlam** [tuple] with test for joint significance of lambda across equations (test value, degrees of freedom, p-value)
- **surchow** [list] with tuples for Chow test on regression coefficients. each tuple contains test value, degrees of freedom, p-value
- name_bigy [dictionary] with name of dependent variable for each equation
- **name_bigX** [dictionary] with names of explanatory variables for each equation
- **name_ds** [string] name for the data set
- name_w [string] name for the weights file
- name_regimes [string] name of regime variable for use in the output

Initialize self. See help(type(self)) for accurate signature.

Methods

__init___(self, bigy, bigX, w[, regimes, ...]) Initialize self.

3.17.4 spreg.SURlagIV

Parameters

bigy [dictionary] with vector for dependent variable by equation

bigX [dictionary] with matrix of explanatory variables by equation (note, already includes constant term)

bigyend [dictionary] with matrix of endogenous variables by equation (optional)

bigq [dictionary] with matrix of instruments by equation (optional)

w [spatial weights object, required]

vm [boolean] listing of full variance-covariance matrix, default = False

w_lags [integer] order of spatial lags for WX instruments, default = 1

lag_q [boolean] flag to apply spatial lag to other instruments, default = True

nonspat_diag [boolean] flag for non-spatial diagnostics, default = True

spat_diag [boolean] flag for spatial diagnostics, default = False

- name_bigy [dictionary] with name of dependent variable for each equation. default = None, but should be specified. is done when sur_stackxy is used.
- name_bigX [dictionary] with names of explanatory variables for each equation. default = None, but should be specified. is done when sur_stackxy is used.
- name_bigyend [dictionary] with names of endogenous variables for each equation. default =
 None, but should be specified. is done when sur_stackZ is used.
- name_bigq [dictionary] with names of instrumental variables for each equations. default =
 None, but should be specified. is done when sur_stackZ is used.

name_ds [string] name for the data set

name_w [string] name for the spatial weights

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists. Each equation should be listed separately. Although not required, in this example we will specify additional endogenous regressors. Equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors, RD80 as endogenous regressor and FP79 as additional instrument. For equation 2, HR90 is the dependent variable, PS90 and UE90 the exogenous regressors, RD90 as endogenous regressor and FP99 as additional instrument

```
>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]
```

The SUR method requires data to be provided as dictionaries. PySAL provides two tools to create these dictionaries from the list of variables: sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and additional instruments (q).

```
>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)
```

To run a spatial lag model, we need to specify the spatial weights matrix. To do that, we can open an already existing gal file or create a new one. In this example, we will create a new one from NAT.shp and transform it to row-standardized.

```
>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp
___"))
>>> w.transform='r'
```

We can now run the regression and then have a summary of the output by typing: print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t and p-value of the parameters:

```
>>> reg.tsls_inf
{0: array([[ 0.49128435, 14.15620899,
                                        0.
                                                 ],
        0.11516292, 12.50787151,
      [
                                  0.
                                              ],
                                   0.80962588],
      [ 0.03204088, -0.2409087,
      [ 0.1876025 , 19.45875745,
                                  Ο.
                                             ],
      [ 0.05450628, 0.06653605,
                                  0.94695106]]), 1: array([[ 0.44969956,
                                                                           12.
→47726211,
           0.
                      ],
      [ 0.10440241, 13.28674277,
                                    0.
                                              ],
      [ 0.04150243, -3.73761961,
                                    0.00018577],
```

(continues on next page)

(continued from previous page)

[0.19133145,	16.66451427,	Ο.],	
0.04394024,	5.87893596,	Ο.]])}	

Attributes

w [spatial weights object]

bigy [dictionary] with y values

- **bigZ** [dictionary] with matrix of exogenous and endogenous variables for each equation
- **bigyend** [dictionary] with matrix of endogenous variables for each equation; contains Wy only if no other endogenous specified
- **bigq** [dictionary] with matrix of instrumental variables for each equation; contains WX only if no other endogenous specified
- **bigZHZH** [dictionary] with matrix of cross products Zhat_r'Zhat_s
- **bigZHy** [dictionary] with matrix of cross products Zhat_r'y_end_s
- **n_eq** [int] number of equations
- **n** [int] number of observations in each cross-section
- **bigK** [array] vector with number of explanatory variables (including constant, exogenous and endogenous) for each equation
- **b2SLS** [dictionary] with 2SLS regression coefficients for each equation
- tslsE [array] N x n_eq array with OLS residuals for each equation
- **b3SLS** [dictionary] with 3SLS regression coefficients for each equation
- varb [array] variance-covariance matrix
- sig [array] Sigma matrix of inter-equation error covariances
- resids [array] n by n_eq array of residuals
- corr [array] inter-equation 3SLS error correlation matrix
- tsls_inf [dictionary] with standard error, asymptotic t and p-value, one for each equation
- **joinrho** [tuple] test on joint significance of spatial autoregressive coefficient. tuple with test statistic, degrees of freedom, p-value
- **surchow** [array] list with tuples for Chow test on regression coefficients each tuple contains test value, degrees of freedom, p-value
- **name_w** [string] name for the spatial weights
- **name_ds** [string] name for the data set
- name_bigy [dictionary] with name of dependent variable for each equation
- name_bigX [dictionary] with names of explanatory variables for each equation
- name_bigyend [dictionary] with names of endogenous variables for each equation

name_bigq [dictionary] with names of instrumental variables for each equations

__init___(self, bigy, bigX, bigyend=None, bigq=None, w=None, regimes=None, vm=False, regime_lag_sep=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None, name_regimes=None) Initialize self. See help(type(self)) for accurate signature.

Methods

3.18 Diagnostics

Diagnostic tests are useful for identifying model fit, sufficiency, and specification correctness.

<pre>spreg.diagnostics.f_stat(reg)</pre>	Calculates the f-statistic and associated p-value of the regression.
<pre>spreg.diagnostics.t_stat(reg[, z_stat])</pre>	Calculates the t-statistics (or z-statistics) and associated
	p-values.
spreg.diagnostics.r2(reg)	Calculates the R ² value for the regression.
spreg.diagnostics.ar2(reg)	Calculates the adjusted R ² value for the regression.
<pre>spreg.diagnostics.se_betas(reg)</pre>	Calculates the standard error of the regression coefficients.
<pre>spreg.diagnostics.log_likelihood(reg)</pre>	Calculates the log-likelihood value for the regression.
spreg.diagnostics.akaike(reg)	Calculates the Akaike Information Criterion.
spreg.diagnostics.schwarz(reg)	Calculates the Schwarz Information Criterion.
<pre>spreg.diagnostics.condition_index(reg)</pre>	Calculates the multicollinearity condition index accord-
	ing to Belsey, Kuh and Welsh (1980) [BKW05].
spreg.diagnostics.jarque_bera(reg)	Jarque-Bera test for normality in the residuals.
<pre>spreg.diagnostics.breusch_pagan(reg[, z])</pre>	Calculates the Breusch-Pagan test statistic to check for
	heteroscedasticity.
spreg.diagnostics.white(reg)	Calculates the White test to check for heteroscedasticity.
<pre>spreg.diagnostics.koenker_bassett(reg[,</pre>	Calculates the Koenker-Bassett test statistic to check for
z])	heteroscedasticity.
spreg.diagnostics.vif(reg)	Calculates the variance inflation factor for each inde-
	pendent variable.
<pre>spreg.diagnostics.likratiotest(reg0,</pre>	Likelihood ratio test statistic [Gre03]
reg1)	
<pre>spreg.diagnostics_sp.LMtests(ols, w[, tests])</pre>	Lagrange Multiplier tests.
<pre>spreg.diagnostics_sp.MoranRes(ols, w[, z])</pre>	Moran's I for spatial autocorrelation in residuals from OLS regression
<pre>spreg.diagnostics_sp.AKtest(iv, w[, case])</pre>	Moran's I test of spatial autocorrelation for IV estima- tion.
<pre>spreg.diagnostics_sur.sur_setp(bigB, varb)</pre>	Utility to compute standard error, t and p-value
<pre>spreg.diagnostics_sur.sur_lrtest(n,</pre>	Likelihood Ratio test on off-diagonal elements of Sigma
n_eq,)	6
<pre>spreg.diagnostics_sur.sur_lmtest(n, n_eq, sig)</pre>	Lagrange Multiplier test on off-diagonal elements of Sigma
	Continued on next page

Continued on next page

<pre>spreg.diagnostics_sur.lam_setp(lam, vm)</pre>	Standard errors, t-test and p-value for lambda in SUR			
	Error ML			
<pre>spreg.diagnostics_sur.surLMe(n_eq, WS,</pre>	Lagrange Multiplier test on error spatial autocorrelation			
bigE, sig)	in SUR			
spreg.diagnostics_sur.surLMlag(n_eq,	Lagrange Multiplier test on lag spatial autocorrelation			
WS,)	in SUR			

Table 63 - continued from previous page

3.18.1 spreg.diagnostics.f_stat

spreg.diagnostics.f_stat(reg)

Calculates the f-statistic and associated p-value of the regression. [Gre03]. (For two stage least squares see f_stat_tsls)

Parameters

reg [regression object] output instance from a regression model

Returns

fs_result [tuple] includes value of F statistic and associated p-value

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the F-statistic for the regression.

>>> testresult = diagnostics.f_stat(reg)

Print the results tuple, including the statistic and its significance.

```
>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1])
('28.385629224695', '0.00000009341')
```

3.18.2 spreg.diagnostics.t_stat

spreg.diagnostics.t_stat(reg, z_stat=False)

Calculates the t-statistics (or z-statistics) and associated p-values. [Gre03]

Parameters

reg [regression object] output instance from a regression model

z_stat [boolean] If True run z-stat instead of t-stat

Returns

ts_result [list of tuples] each tuple includes value of t statistic (or z statistic) and associated p-value

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.open(libpysal.examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate t-statistics for the regression coefficients.

```
>>> testresult = diagnostics.t_stat(reg)
```

Print the tuples that contain the t-statistics and their significances.

```
>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"

$$ testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.

$$ 12f"%testresult[2][1])

('14.490373143689', '0.00000000000', '-4.780496191297', '0.000018289595', '-2.

$$$ 654408642718', '0.010874504910')
```

3.18.3 spreg.diagnostics.r2

spreg.diagnostics.r2(reg)

Calculates the R² value for the regression. [Gre03]

Parameters

reg [regression object] output instance from a regression model

Returns

r2_result [float] value of the coefficient of determination for the regression

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the R^2 value for the regression.

```
>>> testresult = diagnostics.r2(reg)
```

Print the result.

```
>>> print("%1.8f"%testresult)
0.55240404
```

3.18.4 spreg.diagnostics.ar2

```
spreg.diagnostics.ar2(reg)
```

Calculates the adjusted R^2 value for the regression. [Gre03]

Parameters

reg [regression object] output instance from a regression model

Returns

ar2_result [float] value of R^2 adjusted for the number of explanatory variables.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the adjusted R^2 value for the regression. >>> testresult = diagnostics.ar2(reg)

Print the result.

```
>>> print("%1.8f"%testresult)
0.53294335
```

3.18.5 spreg.diagnostics.se_betas

```
spreg.diagnostics.se_betas(reg)
```

Calculates the standard error of the regression coefficients. [Gre03]

Parameters

reg [regression object] output instance from a regression model

Returns

se_result [array] includes standard errors of each coefficient (1 x k)

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the standard errors of the regression coefficients.

```
>>> testresult = diagnostics.se_betas(reg)
```

Print the vector of standard errors.

```
>>> testresult
array([ 4.73548613, 0.33413076, 0.10319868])
```

3.18.6 spreg.diagnostics.log_likelihood

```
spreg.diagnostics.log_likelihood(reg)
Calculates the log-likelihood value for the regression. [Gre03]
```

Parameters

reg [regression object] output instance from a regression model

Returns

ll_result [float] value for the log-likelihood of the regression.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the log-likelihood for the regression.

```
>>> testresult = diagnostics.log_likelihood(reg)
```

Print the result.

```
>>> testresult
-187.3772388121491
```

3.18.7 spreg.diagnostics.akaike

```
spreg.diagnostics.akaike(reg)
```

Calculates the Akaike Information Criterion. [Aka74]

Parameters

reg [regression object] output instance from a regression model

Returns

aic_result [scalar] value for Akaike Information Criterion of the regression.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
```

(continues on next page)

(continued from previous page)

```
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Akaike Information Criterion (AIC).

```
>>> testresult = diagnostics.akaike(reg)
```

Print the result.

```
>>> testresult
380.7544776242982
```

3.18.8 spreg.diagnostics.schwarz

```
spreg.diagnostics.schwarz(reg)
```

Calculates the Schwarz Information Criterion. [S+78]

Parameters

reg [regression object] output instance from a regression model

Returns

bic_result [scalar] value for Schwarz (Bayesian) Information Criterion of the regression.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Schwarz Information Criterion.

```
>>> testresult = diagnostics.schwarz(reg)
```

Print the results.

```
>>> testresult
386.42993851863008
```

3.18.9 spreg.diagnostics.condition_index

spreg.diagnostics.condition_index(reg)

Calculates the multicollinearity condition index according to Belsey, Kuh and Welsh (1980) [BKW05].

Parameters

reg [regression object] output instance from a regression model

Returns

ci_result [float] scalar value for the multicollinearity condition index.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the condition index to check for multicollinearity.

```
>>> testresult = diagnostics.condition_index(reg)
```

Print the result.

```
>>> print("%1.3f"%testresult)
6.542
```

3.18.10 spreg.diagnostics.jarque_bera

```
spreg.diagnostics.jarque_bera(reg)
```

Jarque-Bera test for normality in the residuals. [JB80]

Parameters

reg [regression object] output instance from a regression model

Returns

- **jb_result** [dictionary] contains the statistic (jb) for the Jarque-Bera test and the associated p-value (p-value)
- df [integer] degrees of freedom for the test (always 2)
- jb [float] value of the test statistic

pvalue [float] p-value associated with the statistic (chi² distributed with 2 df)

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Jarque-Bera test for normality of residuals.

```
>>> testresult = diagnostics.jarque_bera(reg)
```

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['jb'])
1.836

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.3994
```

3.18.11 spreg.diagnostics.breusch_pagan

```
spreg.diagnostics.breusch_pagan(reg, z=None)
```

Calculates the Breusch-Pagan test statistic to check for heteroscedasticity. [BP79]

Parameters

reg [regression object] output instance from a regression model

z [array] optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X^{**2}) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values.

Returns

bp_result [dictionary] contains the statistic (bp) for the test and the associated p-value (p-value)

bp [float] scalar value for the Breusch-Pagan test statistic

df [integer] degrees of freedom associated with the test (k)

pvalue [float] p-value associated with the statistic (chi^2 distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Breusch-Pagan test for heteroscedasticity.

```
>>> testresult = diagnostics.breusch_pagan(reg)
```

Print the degrees of freedom for the test.

```
>>> testresult['df']
2
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['bp'])
7.900
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0193
```

3.18.12 spreg.diagnostics.white

```
spreg.diagnostics.white(reg)
Calculates the White test to check for heteroscedasticity. [Whi80]
```

Parameters

reg [regression object] output instance from a regression model

Returns

white_result [dictionary] contains the statistic (white), degrees of freedom (df) and the associated p-value (pvalue) for the White test.

white [float] scalar value for the White test statistic.

df [integer] degrees of freedom associated with the test

pvalue [float] p-value associated with the statistic (chi^2 distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

```
>>> reg = OLS(y,X)
```

Calculate the White test for heteroscedasticity.

```
>>> testresult = diagnostics.white(reg)
```

Print the degrees of freedom for the test.

>>> print testresult['df']
5

Print the test statistic.

```
>>> print("%1.3f"%testresult['wh'])
19.946
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0013
```

3.18.13 spreg.diagnostics.koenker_bassett

spreg.diagnostics.koenker_bassett(reg, z=None)

Calculates the Koenker-Bassett test statistic to check for heteroscedasticity. [KBJ82][Gre03]

Parameters

reg [regression output] output from an instance of a regression class

z [array] optional input for specifying an alternative set of variables (Z) to explain the observed variance. By default this is a matrix of the squared explanatory variables (X^{**2}) with a constant added to the first column if not already present. In the default case, the explanatory variables are squared to eliminate negative values.

Returns

- **kb_result** [dictionary] contains the statistic (kb), degrees of freedom (df) and the associated p-value (pvalue) for the test.
- **kb** [float] scalar value for the Koenker-Bassett test statistic.

df [integer] degrees of freedom associated with the test

pvalue [float] p-value associated with the statistic (chi^2 distributed)

Notes

x attribute in the reg object must have a constant term included. This is standard for spreg.OLS so no testing done to confirm constant.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

```
>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")
```

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T
```

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Koenker-Bassett test for heteroscedasticity.

```
>>> testresult = diagnostics.koenker_bassett(reg)
```

Print the degrees of freedom for the test.

```
>>> testresult['df']
2
```

Print the test statistic.

```
>>> print("%1.3f"%testresult['kb'])
5.694
```

Print the associated p-value.

```
>>> print("%1.4f"%testresult['pvalue'])
0.0580
```

3.18.14 spreg.diagnostics.vif

spreg.diagnostics.vif(reg)

Calculates the variance inflation factor for each independent variable. For the ease of indexing the results, the constant is currently included. This should be omitted when reporting the results to the output text. [Gre03]

Parameters

reg [regression object] output instance from a regression model

Returns

vif_result [list of tuples] each tuple includes the vif and the tolerance, the order of the variables corresponds to their order in the reg.x matrix

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS
```

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the variance inflation factor (VIF). >>> testresult = diagnostics.vif(reg)

Select the tuple for the income variable.

>>> incvif = testresult[1]

Print the VIF for income.

```
>>> print("%12.12f"%incvif[0])
1.333117497189
```

Print the tolerance for income.

>>> print("%12.12f"%incvif[1])
0.750121427487

Repeat for the home value variable.

```
>>> hovalvif = testresult[2]
>>> print("%12.12f"%hovalvif[0])
1.333117497189
>>> print("%12.12f"%hovalvif[1])
0.750121427487
```

3.18.15 spreg.diagnostics.likratiotest

```
spreg.diagnostics.likratiotest (reg0, reg1)
Likelihood ratio test statistic [Gre03]
```

Parameters

reg0 [regression object] for constrained model (H0)

reg1 [regression object] for unconstrained model (H1)

Returns

likratio [dictionary] contains the statistic (likr), the degrees of freedom (df) and the p-value (pvalue)

likr [float] likelihood ratio statistic

df [integer] degrees of freedom

p-value [float] p-value

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import scipy.stats as stats
>>> import spreg.ml_lag as lag
```

Use the baltim sample data set

```
>>> db = libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM", "NBATH", "PATIO", "FIREPL", "AC", "GAR", "AGE", "LOTSZ", "SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> w.close()
>>> w.transform = 'r'
```

OLS regression

```
>>> ols1 = ps.spreg.OLS(y,x)
```

ML Lag regression

```
>>> mllag1 = lag.ML_Lag(y,x,w)
```

```
>>> lr = likratiotest(ols1,mllag1)
```

3.18.16 spreg.diagnostics_sp.LMtests

class spreg.diagnostics_sp.**LMtests** (*ols, w, tests=['all']*) Lagrange Multiplier tests. Implemented as presented in [ABFY96]

Parameters

- **Ime** [tuple] (Only if 'Ime' or 'all' was in tests). Pair of statistic and p-value for the LM error test.
- Iml [tuple] (Only if 'lml' or 'all' was in tests). Pair of statistic and p-value for the LM lag test.
- **rlme** [tuple] (Only if 'rlme' or 'all' was in tests). Pair of statistic and p-value for the Robust LM error test.
- **rlml** [tuple] (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the Robust LM lag test.
- **sarma** [tuple] (Only if 'rlml' or 'all' was in tests). Pair of statistic and p-value for the SARMA test.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from ols import OLS
```

Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively

```
>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T
```

Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run all the LM tests in the residuals. These diagnostics test for the presence of remaining spatial autocorrelation in the residuals of an OLS model and give indication about the type of spatial model. There are five types: presence of a spatial lag model (simple and robust version), presence of a spatial error model (simple and robust version) and joint presence of both a spatial lag as well as a spatial error model.

>>> lms = spreg.diagnostics_sp.LMtests(ols, w)

LM error test:

```
>>> print round(lms.lme[0],4), round(lms.lme[1],4)
3.0971 0.0784
```

LM lag test:

```
>>> print round(lms.lml[0],4), round(lms.lml[1],4)
0.9816 0.3218
```

Robust LM error test:

```
>>> print round(lms.rlme[0],4), round(lms.rlme[1],4)
3.2092 0.0732
```

Robust LM lag test:

```
>>> print round(lms.rlml[0],4), round(lms.rlml[1],4)
1.0936 0.2957
```

LM SARMA test:

>>> print round(lms.sarma[0],4), round(lms.sarma[1],4)
4.1907 0.123

Attributes

ols [OLS] OLS regression object

w [W] Spatial weights instance

tests [list] Lists of strings with the tests desired to be performed. Values may be:

- 'all': runs all the options (default)
- 'lme': LM error test
- 'rlme': Robust LM error test
- 'lml' : LM lag test
- 'rlml': Robust LM lag test

__init__ (*self, ols, w, tests=['all']*) Initialize self. See help(type(self)) for accurate signature.

Methods

		Initialize self.
--	--	------------------

3.18.17 spreg.diagnostics_sp.MoranRes

class spreg.diagnostics_sp.**MoranRes** (*ols*, *w*, *z*=*False*) Moran's I for spatial autocorrelation in residuals from OLS regression

Parameters

- ols [OLS] OLS regression object
- w [W] Spatial weights instance
- **z** [boolean] If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False.

Examples

```
>>> import numpy as np
>>> import libpysal
>>> from ols import OLS
```

Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need ('HOVAL' as dependent as well as 'INC' and 'CRIME' as independent) and directly transform them into nx1 and nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T

Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run Moran's I test for residual spatial autocorrelation in an OLS model. This computes the traditional statistic applying a correction in the expectation and variance to account for the fact it comes from residuals instead of an independent variable

```
>>> m = spreg.diagnostics_sp.MoranRes(ols, w, z=True)
```

Value of the Moran's I statistic:

```
>>> print round(m.I,4)
0.1713
```

Value of the Moran's I expectation:

```
>>> print round(m.eI,4)
-0.0345
```

Value of the Moran's I variance:

```
>>> print round(m.vI,4)
0.0081
```

Value of the Moran's I standardized value. This is distributed as a standard Normal(0, 1)

```
>>> print round(m.zI,4)
2.2827
```

P-value of the standardized Moran's I value (z):

```
>>> print round(m.p_norm,4)
0.0224
```

Attributes

- I [float] Moran's I statistic
- eI [float] Moran's I expectation
- vI [float] Moran's I variance
- zI [float] Moran's I standardized value

__init__ (self, ols, w, z=False)

Initialize self. See help(type(self)) for accurate signature.

Methods

(self, ols, w[, z])	Initialize self.	
---------------------	------------------	--

3.18.18 spreg.diagnostics_sp.AKtest

class spreg.diagnostics_sp.AKtest(iv, w, case='nosp')

Moran's I test of spatial autocorrelation for IV estimation. Implemented following the original reference [AK97]

Parameters

- iv [TSLS] Regression object from TSLS class
- w [W] Spatial weights instance

case [string] Flag for special cases (default to 'nosp'):

- 'nosp': Only NO spatial end. reg.
- 'gen': General case (spatial lag + end. reg.)

Examples

We first need to import the needed modules. Numpy is needed to convert the data we read into arrays that spreg understands and pysal to perform all the analysis. The TSLS is required to run the model on which we will perform the tests.

```
>>> import numpy as np
>>> import libpysal
>>> from twosls import TSLS
>>> from twosls_sp import GM_Lag
```

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open(). This is the DBF associated with the Columbus shapefile. Note that libpysal.io.open() also reads data in CSV format; since the actual class requires data to be passed in as numpy arrays, the user can read their data in using any method.

```
>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')
```

Before being able to apply the diagnostics, we have to run a model and, for that, we need the input variables. Extract the CRIME column (crime rates) from the DBF file and make it the dependent variable for the regression. Note that PySAL requires this to be an numpy array of shape (n, 1) as opposed to the also common shape of (n,) that other packages accept.

```
>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))
```

Extract INC (income) vector from the DBF to be used as independent variables in the regression. Note that PySAL requires this to be an nxj numpy array, where j is the number of independent variables (not including a constant). By default this model adds a vector of ones to the independent variables passed in, but this can be overridden by passing constant=False.

```
>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T
```

In this case, we consider HOVAL (home value) as an endogenous regressor, so we acknowledge that by reading it in a different category.

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

In order to properly account for the endogeneity, we have to pass in the instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Now we are good to run the model. It is an easy one line task.

>>> reg = TSLS(y, X, yd, q=q)

Now we are concerned with whether our non-spatial model presents spatial autocorrelation in the residuals. To assess this possibility, we can run the Anselin-Kelejian test, which is a version of the classical LM error test adapted for the case of residuals from an instrumental variables (IV) regression. First we need an extra object, the weights matrix, which includes the spatial configuration of the observations into the error component of the model. To do that, we can open an already existing gal file or create a new one. In this case, we will create one from columbus.shp.

Unless there is a good reason not to do it, the weights have to be row-standardized so every row of the matrix sums to one. Among other things, this allows to interpret the spatial lag of a variable as the average value of the neighboring observations. In PySAL, this can be easily performed in the following way:

>>> w.transform = 'r'

We are good to run the test. It is a very simple task:

>>> ak = AKtest(reg, w)

And explore the information obtained:

```
>>> print('AK test: %f P-value: %f'%(ak.ak, ak.p))
AK test: 4.642895 P-value: 0.031182
```

The test also accomodates the case when the residuals come from an IV regression that includes a spatial lag of the dependent variable. The only requirement needed is to modify the case parameter when we call AKtest. First, let us run a spatial lag model:

>>> reg_lag = GM_Lag(y, X, yd, q=q, w=w)

And now we can run the AK test and obtain similar information as in the non-spatial model.

```
>>> ak_sp = AKtest(reg, w, case='gen')
>>> print('AK test: %f P-value: %f'%(ak_sp.ak, ak_sp.p))
AK test: 1.157593 P-value: 0.281965
```

Attributes

mi [float] Moran's I statistic for IV residuals

- **ak** [float] Square of corrected Moran's I for residuals $ak = \frac{NimesI^*}{\phi^2}$. Note: if case='nosp' then it simplifies to the LMerror
- **p** [float] P-value of the test

__init__ (self, iv, w, case='nosp')
Initialize self. See help(type(self)) for accurate signature.

Methods

	elf.
--	------

3.18.19 spreg.diagnostics_sur.sur_setp

spreg.diagnostics_sur.sur_setp(bigB, varb)
Utility to compute standard error, t and p-value

Parameters

bigB [dictionary] of regression coefficient estimates, one vector by equation

varb [array] variance-covariance matrix of coefficients

Returns

surinfdict [dictionary] with standard error, t-value, and p-value array, one for each equation

3.18.20 spreg.diagnostics_sur.sur_Irtest

```
spreg.diagnostics_sur.sur_lrtest (n, n_eq, ldetS0, ldetS1)
```

Likelihood Ratio test on off-diagonal elements of Sigma

Parameters

- **n** [int] cross-sectional dimension (number of observations for an equation)
- **n_eq** [int] number of equations

ldetS0 [float] log determinant of Sigma for OLS case

ldetS1 [float] log determinant of Sigma for SUR case (should be iterated)

Returns

(**lrtest,M,pvalue**) [tuple] with value of test statistic (lrtest), degrees of freedom (M, as an integer) p-value

3.18.21 spreg.diagnostics_sur.sur_Imtest

spreg.diagnostics_sur.sur_lmtest (n, n_eq, sig)
Lagrange Multiplier test on off-diagonal elements of Sigma

Parameters

- **n** [int] cross-sectional dimension (number of observations for an equation)
- n_eq [int] number of equations

sig [array] inter-equation covariance matrix for null model (OLS)

Returns

(**Imtest,M,pvalue**) [tuple] with value of test statistic (Imtest), degrees of freedom (M, as an integer) p-value

3.18.22 spreg.diagnostics_sur.lam_setp

```
spreg.diagnostics_sur.lam_setp(lam, vm)
```

Standard errors, t-test and p-value for lambda in SUR Error ML

Parameters

- lam [array] n_eq x 1 array with ML estimates for spatial error autoregressive coefficient
- vm [array] n_eq x n_eq subset of variance-covariance matrix for lambda and Sigma in SUR Error ML (needs to be subset from full vm)

Returns

: tuple with arrays for standard error, t-value and p-value (each element in the tuple is an n_eq x 1 array)

3.18.23 spreg.diagnostics_sur.surLMe

spreg.diagnostics_sur.surLMe(n_eq, WS, bigE, sig)

Lagrange Multiplier test on error spatial autocorrelation in SUR

Parameters

n_eq [int] number of equations

WS [array] spatial weights matrix in sparse form

bigE [array] n x n_eq matrix of residuals by equation

sig [array] cross-equation error covariance matrix

Returns

(LMe,n_eq,pvalue) [tuple] with value of statistic (LMe), degrees of freedom (n_eq) and p-value

3.18.24 spreg.diagnostics_sur.surLMlag

```
spreg.diagnostics_sur.surLMlag(n_eq, WS, bigy, bigX, bigE, bigYP, sig, varb)
Lagrange Multiplier test on lag spatial autocorrelation in SUR
```

Parameters

n_eq [int] number of equations
WS [spatial weights matrix in sparse form]
bigy [dictionary] with y values
bigX [dictionary] with X values
bigE [array] n x n_eq matrix of residuals by equation
bigYP [array] n x n_eq matrix of predicted values by equation

sig [array] cross-equation error covariance matrix

varb [array] variance-covariance matrix for b coefficients (inverse of Ibb)

Returns

(LMlag,n_eq,pvalue) [tuple] with value of statistic (LMlag), degrees of freedom (n_eq) and p-value

CHAPTER

FOUR

REFERENCES

BIBLIOGRAPHY

- [Aka74] Hirotugu Akaike. A new look at the statistical model identification. *IEEE transactions on automatic control*, 19(6):716–723, 1974.
- [Ans88] Luc Anselin. Spatial Econometrics: Methods and Models. Kluwer, Dordrecht, 1988.
- [Ans11] Luc Anselin. GMM estimation of spatial error autocorrelation with and without heteroskedasticity. Technical Report, GeoDa Center for Geospatial Analysis and Computation, 2011.
- [ABFY96] Luc Anselin, Anil K Bera, Raymond Florax, and Mann J Yoon. Simple diagnostic tests for spatial dependence. *Regional science and urban economics*, 26(1):77–104, 1996.
- [AK97] Luc Anselin and Harry H Kelejian. Testing for spatial error autocorrelation in the presence of endogenous regressors. *International Regional Science Review*, 20(1-2):153–182, 1997.
- [ADKP10] Irani Arraiz, David M. Drukker, Harry H. Kelejian, and Ingmar R. Prucha. A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. *Journal of Regional Science*, 50(2):592–614, 2010. doi:10.1111/j.1467-9787.2009.00618.x.
- [BKW05] David A Belsley, Edwin Kuh, and Roy E Welsch. *Regression diagnostics: Identifying influential data and sources of collinearity*. Volume 571. John Wiley & Sons, 2005.
- [BP79] Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity and random coefficient variation. *Econometrica: Journal of the Econometric Society*, pages 1287–1294, 1979.
- [DEP13] David M Drukker, Peter Egger, and Ingmar R Prucha. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. *Econometric Reviews*, 32(5-6):686–733, 2013.
- [DPR13] David M. Drukker, Ingmar R. Prucha, and Rafal Raciborski. A command for estimating spatialautoregressive models with spatial-autoregressive disturbances and additional endogenous variables. *The Stata Journal*, 13(2):287–301, 2013. URL: https://journals.sagepub.com/doi/abs/10.1177/ 1536867X1301300203.
- [Gre03] William H Greene. *Econometric analysis*. Pearson Education India, 2003.
- [JB80] Carlos M Jarque and Anil K Bera. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. *Economics letters*, 6(3):255–259, 1980.
- [KP99] H H Kelejian and I R Prucha. A generalized moments estimator for the autoregressive parameter in a spatial model. *Int. Econ. Rev.*, 40:509–534, 1999.
- [KP98] Harry H Kelejian and Ingmar R Prucha. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Fin. Econ., 17(1):99–121, 1998.
- [KBJ82] Roger Koenker and Gilbert Bassett Jr. Robust tests for heteroscedasticity based on regression quantiles. *Econometrica: Journal of the Econometric Society*, pages 43–61, 1982.

- [S+78] Gideon Schwarz and others. Estimating the dimension of a model. *The annals of statistics*, 6(2):461–464, 1978.
- [Whi80] Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. *Econometrica: Journal of the Econometric Society*, pages 817–838, 1980.

INDEX

Symbols

- ____init___() (spreg.GM_Combo method), 36 ___init___() (spreg.GM_Combo_Het method), 40 ___init__() (spreg.GM_Combo_Het_Regimes method), 109 init () (spreg.GM Combo Hom method), 44 (spreg.GM_Combo_Hom_Regimes __init__() method), 103___init___() (spreg.GM_Combo_Regimes method), 98 ____init___() (spreg.GM_Endog_Error method), 47 ___init___() (spreg.GM_Endog_Error_Het method), 50 (spreg.GM_Endog_Error_Het_Regimes __init__() method), 123 ___init___() (spreg.GM_Endog_Error_Hom method), 54 __init___() (spreg.GM_Endog_Error_Hom_Regimes method), 118 ___init__() (spreg.GM_Endog_Error_Regimes method), 113 ___init___() (spreg.GM_Error method), 27 ___init___() (spreg.GM_Error_Het method), 30 init () (spreg.GM Error Het Regimes method), 88 ___init___() (spreg.GM_Error_Hom method), 33 ___init__() (spreg.GM_Error_Hom_Regimes method), 93 ____init___() (spreg.GM_Error_Regimes method), 84 __init___() (spreg.GM_Lag method), 24 ____init___() (spreg.GM_Lag_Regimes method), 80 ____init___() (spreg.ML_Error method), 20 ____init___() (spreg.ML_Error_Regimes method), 74 ____init___() (spreg.ML_Lag method), 17 ____init___() (spreg.ML_Lag_Regimes method), 70 ____init___() (spreg.OLS method), 12 ___init___() (spreg.OLS_Regimes method), 65 ___init___() (spreg.SUR method), 127 ___init___() (spreg.SURerrorGM method), 129 ____init___() (spreg.SURerrorML method), 132 ____init___() (spreg.SURlagIV method), 135 ____init___() (spreg.TSLS method), 57 ____init___() (spreg.ThreeSLS method), 60

Α

akaike() (in module spreg.diagnostics), 142
AKtest (class in spreg.diagnostics_sp), 156
ar2() (in module spreg.diagnostics), 140

В

breusch_pagan() (in module spreg.diagnostics), 146

С

F

f_stat() (in module spreg.diagnostics), 137

G

GM Combo (class in spreg), 33 GM Combo Het (class in spreg), 37 GM Combo Het Regimes (class in spreg), 104 GM_Combo_Hom (class in spreg), 41 GM_Combo_Hom_Regimes (class in spreg), 98 GM_Combo_Regimes (class in spreg), 93 GM_Endoq_Error (class in spreg), 44 GM_Endoq_Error_Het (class in spreg), 47 GM_Endog_Error_Het_Regimes (class in spreg), 118 GM_Endog_Error_Hom (class in spreg), 51 GM_Endog_Error_Hom_Regimes (class in spreg), 114 GM_Endoq_Error_Regimes (class in spreg), 109 GM_Error (class in spreg), 25 GM_Error_Het (class in spreg), 27 GM_Error_Het_Regimes (class in spreg), 85 GM Error Hom (class in spreg), 30 GM Error Hom Regimes (class in spreg), 89

GM_Error_Regimes (class in spreg), 81
GM_Lag (class in spreg), 20
GM_Lag_Regimes (class in spreg), 75

J

jarque_bera() (in module spreg.diagnostics), 145

K

koenker_bassett() (in module spreg.diagnostics),
149

L

lam_setp() (in module spreg.diagnostics_sur), 159
likratiotest() (in module spreg.diagnostics), 151
LMtests (class in spreg.diagnostics_sp), 152
log_likelihood() (in module spreg.diagnostics),
141

Μ

ML_Error (class in spreg), 17 ML_Error_Regimes (class in spreg), 70 ML_Lag (class in spreg), 13 ML_Lag_Regimes (class in spreg), 66 MoranRes (class in spreg.diagnostics_sp), 154

0

OLS (*class in spreg*), 8 OLS_Regimes (*class in spreg*), 61

R

r2() (in module spreg.diagnostics), 139

S

schwarz() (in module spreg.diagnostics), 143
se_betas() (in module spreg.diagnostics), 140
SUR (class in spreg), 124
sur_lmtest() (in module spreg.diagnostics_sur), 158
sur_lrtest() (in module spreg.diagnostics_sur), 158
sur_setp() (in module spreg.diagnostics_sur), 158
SURerrorGM (class in spreg), 127
SURerrorML (class in spreg), 130
SURlagIV (class in spreg), 133
surLMe() (in module spreg.diagnostics_sur), 159
surLMlag() (in module spreg.diagnostics_sur), 159

Т

t_stat() (in module spreg.diagnostics), 138 ThreeSLS (class in spreg), 58 TSLS (class in spreg), 54

V

vif() (in module spreg.diagnostics), 150

W

white () (in module spreg.diagnostics), 147