

Spatial Regression Models (spreg)

spreg, short for “spatial regression,” is a python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another. For more information on these models, consult the Spatial Regression short course by Luc Anselin (Spring, 2017), with the Center for Spatial Data Science at the University of Chicago:

 Installation

Installation

spreg is installable using the Python Package Manager, pip. To install:

pip install spreg

Further, all of the stable functionality is also available in PySAL, the
Python Spatial Analysis Library. PySAL can be installed using pip or conda:

pip install pysal #or
conda install pysal

 API reference

API reference

Spatial Regression Models

These are the standard spatial regression models supported by the spreg package. Each of them contains a significant amount of detail in their docstring discussing how they’re used, how they’re fit, and how to interpret the results.

	spreg.OLS(y, x[, w, robust, gwk, sig2n_k, …])

	Ordinary least squares with results and diagnostics.

	spreg.ML_Lag(y, x, w[, method, epsilon, …])

	ML estimation of the spatial lag model with all results and diagnostics; [Ans88]

	spreg.ML_Error(y, x, w[, method, epsilon, …])

	ML estimation of the spatial error model with all results and diagnostics; [Ans88]

	spreg.GM_Lag(y, x[, yend, q, w, w_lags, …])

	Spatial two stage least squares (S2SLS) with results and diagnostics; Anselin (1988) [Ans88]

	spreg.GM_Error(y, x, w[, vm, name_y, …])

	GMM method for a spatial error model, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Error_Het(y, x, w[, max_iter, …])

	GMM method for a spatial error model with heteroskedasticity, with results and diagnostics; based on [ADKP10], following [Ans11].

	spreg.GM_Error_Hom(y, x, w[, max_iter, …])

	GMM method for a spatial error model with homoskedasticity, with results and diagnostics; based on Drukker et al.

	spreg.GM_Combo(y, x[, yend, q, w, w_lags, …])

	GMM method for a spatial lag and error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Combo_Het(y, x[, yend, q, w, …])

	GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].

	spreg.GM_Combo_Hom(y, x[, yend, q, w, …])

	GMM method for a spatial lag and error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al.

	spreg.GM_Endog_Error(y, x, yend, q, w[, vm, …])

	GMM method for a spatial error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Endog_Error_Het(y, x, yend, q, w[, …])

	GMM method for a spatial error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].

	spreg.GM_Endog_Error_Hom(y, x, yend, q, w[, …])

	GMM method for a spatial error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al.

	spreg.TSLS(y, x, yend, q[, w, robust, gwk, …])

	Two stage least squares with results and diagnostics.

	spreg.ThreeSLS(bigy, bigX, bigyend, bigq[, …])

	User class for 3SLS estimation

Regimes Models

Regimes models are variants of spatial regression models which allow for structural instability in parameters. That means that these models allow different coefficient values in distinct subsets of the data.

	spreg.OLS_Regimes(y, x, regimes[, w, …])

	Ordinary least squares with results and diagnostics.

	spreg.ML_Lag_Regimes(y, x, regimes[, w, …])

	ML estimation of the spatial lag model with regimes (note no consistency checks, diagnostics or constants added) [Ans88].

	spreg.ML_Error_Regimes(y, x, regimes[, w, …])

	ML estimation of the spatial error model with regimes (note no consistency checks, diagnostics or constants added); Anselin (1988) [Anselin1988]

	spreg.GM_Lag_Regimes(y, x, regimes[, yend, …])

	Spatial two stage least squares (S2SLS) with regimes; [Ans88]

	spreg.GM_Error_Regimes(y, x, regimes, w[, …])

	GMM method for a spatial error model with regimes, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Error_Het_Regimes(y, x, regimes, w)

	GMM method for a spatial error model with heteroskedasticity and regimes; based on Arraiz et al [ADKP10], following Anselin [Ans11].

	spreg.GM_Error_Hom_Regimes(y, x, regimes, w)

	GMM method for a spatial error model with homoskedasticity, with regimes, results and diagnostics; based on Drukker et al.

	spreg.GM_Combo_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Combo_Hom_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with homoskedasticity, regimes and endogenous variables, with results and diagnostics; based on Drukker et al.

	spreg.GM_Combo_Het_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].

	spreg.GM_Endog_Error_Regimes(y, x, yend, q, …)

	GMM method for a spatial error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	spreg.GM_Endog_Error_Hom_Regimes(y, x, yend, …)

	GMM method for a spatial error model with homoskedasticity, regimes and endogenous variables.

	spreg.GM_Endog_Error_Het_Regimes(y, x, yend, …)

	GMM method for a spatial error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].

Seemingly-Unrelated Regressions

Seeimingly-unrelated regression models are a generalization of linear regression. These models (and their spatial generalizations) allow for correlation in the residual terms between groups that use the same model. In spatial Seeimingly-Unrelated Regressions, the error terms across groups are allowed to exhibit a structured type of correlation: spatail correlation.

	spreg.SUR(bigy, bigX[, w, regimes, …])

	User class for SUR estimation, both two step as well as iterated

	spreg.SURerrorGM(bigy, bigX, w[, regimes, …])

	User class for SUR Error estimation by Maximum Likelihood

	spreg.SURerrorML(bigy, bigX, w[, regimes, …])

	User class for SUR Error estimation by Maximum Likelihood

	spreg.SURlagIV(bigy, bigX[, bigyend, bigq, …])

	User class for spatial lag estimation using IV

	spreg.ThreeSLS(bigy, bigX, bigyend, bigq[, …])

	User class for 3SLS estimation

Diagnostics

Diagnostic tests are useful for identifying model fit, sufficiency, and specification correctness.

	spreg.diagnostics.f_stat(reg)

	Calculates the f-statistic and associated p-value of the regression.

	spreg.diagnostics.t_stat(reg[, z_stat])

	Calculates the t-statistics (or z-statistics) and associated p-values.

	spreg.diagnostics.r2(reg)

	Calculates the R^2 value for the regression.

	spreg.diagnostics.ar2(reg)

	Calculates the adjusted R^2 value for the regression.

	spreg.diagnostics.se_betas(reg)

	Calculates the standard error of the regression coefficients.

	spreg.diagnostics.log_likelihood(reg)

	Calculates the log-likelihood value for the regression.

	spreg.diagnostics.akaike(reg)

	Calculates the Akaike Information Criterion.

	spreg.diagnostics.schwarz(reg)

	Calculates the Schwarz Information Criterion.

	spreg.diagnostics.condition_index(reg)

	Calculates the multicollinearity condition index according to Belsey, Kuh and Welsh (1980) [BKW05].

	spreg.diagnostics.jarque_bera(reg)

	Jarque-Bera test for normality in the residuals.

	spreg.diagnostics.breusch_pagan(reg[, z])

	Calculates the Breusch-Pagan test statistic to check for heteroscedasticity.

	spreg.diagnostics.white(reg)

	Calculates the White test to check for heteroscedasticity.

	spreg.diagnostics.koenker_bassett(reg[, z])

	Calculates the Koenker-Bassett test statistic to check for heteroscedasticity.

	spreg.diagnostics.vif(reg)

	Calculates the variance inflation factor for each independent variable.

	spreg.diagnostics.likratiotest(reg0, reg1)

	Likelihood ratio test statistic [Gre03]

	spreg.diagnostics_sp.LMtests(ols, w[, tests])

	Lagrange Multiplier tests.

	spreg.diagnostics_sp.MoranRes(ols, w[, z])

	Moran’s I for spatial autocorrelation in residuals from OLS regression

	spreg.diagnostics_sp.AKtest(iv, w[, case])

	Moran’s I test of spatial autocorrelation for IV estimation.

	spreg.diagnostics_sur.sur_setp(bigB, varb)

	Utility to compute standard error, t and p-value

	spreg.diagnostics_sur.sur_lrtest(n, n_eq, …)

	Likelihood Ratio test on off-diagonal elements of Sigma

	spreg.diagnostics_sur.sur_lmtest(n, n_eq, sig)

	Lagrange Multiplier test on off-diagonal elements of Sigma

	spreg.diagnostics_sur.lam_setp(lam, vm)

	Standard errors, t-test and p-value for lambda in SUR Error ML

	spreg.diagnostics_sur.surLMe(n_eq, WS, bigE, sig)

	Lagrange Multiplier test on error spatial autocorrelation in SUR

	spreg.diagnostics_sur.surLMlag(n_eq, WS, …)

	Lagrange Multiplier test on lag spatial autocorrelation in SUR

 spreg.OLS

spreg.OLS

	
class spreg.OLS(y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)

	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.

	nonspat_diagboolean
	If True, then compute non-spatial diagnostics on
the regression.

	spat_diagboolean
	If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.

	moranboolean
	If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.

	white_testboolean
	If True, compute White’s specification robust test.
(requires nonspat_diag=True)

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; also, the actual OLS class
requires data to be passed in as numpy arrays so the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an nx1 numpy array.

>>> hoval = db.by_col("HOVAL")
>>> y = np.array(hoval)
>>> y.shape = (len(hoval), 1)

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). spreg.OLS adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

The minimum parameters needed to run an ordinary least squares regression
are the two numpy arrays containing the independent variable and dependent
variables respectively. To make the printed results more meaningful, the
user can pass in explicit names for the variables used; this is optional.

>>> ols = OLS(y, X, name_y='home value', name_x=['income','crime'], name_ds='columbus', white_test=True)

spreg.OLS computes the regression coefficients and their standard
errors, t-stats and p-values. It also computes a large battery of
diagnostics on the regression. In this example we compute the white test
which by default isn’t (‘white_test=True’). All of these results can be independently
accessed as attributes of the regression object created by running
spreg.OLS. They can also be accessed at one time by printing the
summary attribute of the regression object. In the example below, the
parameter on crime is -0.4849, with a t-statistic of -2.6544 and p-value
of 0.01087.

>>> ols.betas
array([[46.42818268],
 [0.62898397],
 [-0.48488854]])
>>> print round(ols.t_stat[2][0],3)
-2.654
>>> print round(ols.t_stat[2][1],3)
0.011
>>> print round(ols.r2,3)
0.35

Or we can easily obtain a full summary of all the results nicely formatted and
ready to be printed:

>>> print ols.summary
REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES

Data set : columbus
Dependent Variable : home value Number of Observations: 49
Mean dependent var : 38.4362 Number of Variables : 3
S.D. dependent var : 18.4661 Degrees of Freedom : 46
R-squared : 0.3495
Adjusted R-squared : 0.3212
Sum squared residual: 10647.015 F-statistic : 12.3582
Sigma-square : 231.457 Prob(F-statistic) : 5.064e-05
S.E. of regression : 15.214 Log likelihood : -201.368
Sigma-square ML : 217.286 Akaike info criterion : 408.735
S.E of regression ML: 14.7406 Schwarz criterion : 414.411

--
 Variable Coefficient Std.Error t-Statistic Probability
--
 CONSTANT 46.4281827 13.1917570 3.5194844 0.0009867
 crime -0.4848885 0.1826729 -2.6544086 0.0108745
 income 0.6289840 0.5359104 1.1736736 0.2465669
--

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 12.538

TEST ON NORMALITY OF ERRORS
TEST DF VALUE PROB
Jarque-Bera 2 39.706 0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF VALUE PROB
Breusch-Pagan test 2 5.767 0.0559
Koenker-Bassett test 2 2.270 0.3214

SPECIFICATION ROBUST TEST
TEST DF VALUE PROB
White 5 2.906 0.7145
================================ END OF REPORT =====================================

If the optional parameters w and spat_diag are passed to spreg.OLS,
spatial diagnostics will also be computed for the regression. These
include Lagrange multiplier tests and Moran’s I of the residuals. The w
parameter is a PySAL spatial weights matrix. In this example, w is built
directly from the shapefile columbus.shp, but w can also be read in from a
GAL or GWT file. In this case a rook contiguity weights matrix is built,
but PySAL also offers queen contiguity, distance weights and k nearest
neighbor weights among others. In the example, the Moran’s I of the
residuals is 0.204 with a standardized value of 2.592 and a p-value of
0.0095.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))
>>> ols = OLS(y, X, w, spat_diag=True, moran=True, name_y='home value', name_x=['income','crime'], name_ds='columbus')
>>> ols.betas
array([[46.42818268],
 [0.62898397],
 [-0.48488854]])
>>> print round(ols.moran_res[0],3)
0.204
>>> print round(ols.moran_res[1],3)
2.592
>>> print round(ols.moran_res[2],4)
0.0095

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	robuststring
	Adjustment for robust standard errors

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	r2float
	R squared

	ar2float
	Adjusted R squared

	utufloat
	Sum of squared residuals

	sig2float
	Sigma squared used in computations

	sig2MLfloat
	Sigma squared (maximum likelihood)

	f_stattuple
	Statistic (float), p-value (float)

	logllfloat
	Log likelihood

	aicfloat
	Akaike information criterion

	schwarzfloat
	Schwarz information criterion

	std_errarray
	1xk array of standard errors of the betas

	t_statlist of tuples
	t statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	mulCollifloat
	Multicollinearity condition number

	jarque_beradictionary
	‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)

	breusch_pagandictionary
	‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)

	koenker_bassettdictionary
	‘kb’: Koenker-Bassett statistic (float); ‘pvalue’:
p-value (float); ‘df’: degrees of freedom (int)

	whitedictionary
	‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int)

	lm_errortuple
	Lagrange multiplier test for spatial error model; tuple
contains the pair (statistic, p-value), where each is a
float

	lm_lagtuple
	Lagrange multiplier test for spatial lag model; tuple
contains the pair (statistic, p-value), where each is a
float

	rlm_errortuple
	Robust lagrange multiplier test for spatial error model;
tuple contains the pair (statistic, p-value), where each
is a float

	rlm_lagtuple
	Robust lagrange multiplier test for spatial lag model;
tuple contains the pair (statistic, p-value), where each
is a float

	lm_sarmatuple
	Lagrange multiplier test for spatial SARMA model; tuple
contains the pair (statistic, p-value), where each is a
float

	moran_restuple
	Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	sig2nfloat
	Sigma squared (computed with n in the denominator)

	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)

	xtxfloat
	\(X'X\)

	xtxifloat
	\((X'X)^{-1}\)

	
__init__(self, y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x[, w, robust, gwk, …])

	Initialize self.

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.ML_Lag

spreg.ML_Lag

	
class spreg.ML_Lag(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial lag model with all results and diagnostics; [Ans88]

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wpysal W object
	Spatial weights object

	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method

	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product

	spat_diagboolean
	if True, include spatial diagnostics

	vmboolean
	if True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

>>> import numpy as np
>>> import libpysal
>>> db = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
>>> mllag = ML_Lag(y,x,w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[4.3675],
 [0.7502],
 [5.6116],
 [7.0497],
 [7.7246],
 [6.1231],
 [4.6375],
 [-0.1107],
 [0.0679],
 [0.0794],
 [0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032, 220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032])
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.4f}".format(mllag.pr2_e)
'0.7062'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
 0.0508, 0.0146, 0.1631, 0.057])
>>> np.around(mllag.z_stat, decimals=4)
array([[0.8939, 0.3714],
 [0.7082, 0.4788],
 [3.2083, 0.0013],
 [2.6018, 0.0093],
 [3.2442, 0.0012],
 [2.6181, 0.0088],
 [2.7382, 0.0062],
 [-2.178 , 0.0294],
 [4.6487, 0.],
 [0.4866, 0.6266],
 [7.4775, 0.]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)'
>>> mllag = ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mllag.betas, decimals=4)
array([[4.3675],
 [0.7502],
 [5.6116],
 [7.0497],
 [7.7246],
 [6.1231],
 [4.6375],
 [-0.1107],
 [0.0679],
 [0.0794],
 [0.4259]])
>>> "{0:.6f}".format(mllag.rho)
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032, 220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([23.8716, 1.1222, 3.0593, 7.3416, 5.6695, 5.4698,
 2.8684, 0.0026, 0.0002, 0.0266, 0.0032])
>>> "{0:.6f}".format(mllag.sig2)
'151.458698'
>>> "{0:.6f}".format(mllag.logll)
'-832.937174'
>>> "{0:.6f}".format(mllag.aic)
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz)
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2)
'0.727081'
>>> "{0:.6f}".format(mllag.pr2_e)
'0.706198'
>>> "{0:.4f}".format(mllag.utu)
'31957.7853'
>>> np.around(mllag.std_err, decimals=4)
array([4.8859, 1.0593, 1.7491, 2.7095, 2.3811, 2.3388, 1.6936,
 0.0508, 0.0146, 0.1631, 0.057])
>>> np.around(mllag.z_stat, decimals=4)
array([[0.8939, 0.3714],
 [0.7082, 0.4788],
 [3.2083, 0.0013],
 [2.6018, 0.0093],
 [3.2442, 0.0012],
 [2.6181, 0.0088],
 [2.7382, 0.0062],
 [-2.178 , 0.0294],
 [4.6487, 0.],
 [0.4866, 0.6266],
 [7.4775, 0.]])
>>> mllag.name_y
'PRICE'
>>> mllag.name_x
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w
'baltim_q.gal'
>>> mllag.name_ds
'baltim.dbf'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)'

	Attributes

	
	betasarray
	(k+1)x1 array of estimated coefficients (rho first)

	rhofloat
	estimate of spatial autoregressive coefficient

	uarray
	nx1 array of residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	methodstring
	log Jacobian method
if ‘full’: brute force (full matrix computations)

	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients

	vm1array
	Variance covariance matrix (k+2 x k+2), includes sig2

	sig2float
	Sigma squared used in computations

	logllfloat
	maximized log-likelihood (including constant terms)

	aicfloat
	Akaike information criterion

	schwarzfloat
	Schwarz criterion

	predy_earray
	predicted values from reduced form

	e_predarray
	prediction errors using reduced form predicted values

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	utufloat
	Sum of squared residuals

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, w[, method, epsilon, …])

	Initialize self.

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.ML_Error

spreg.ML_Error

	
class spreg.ML_Error(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial error model with all results and diagnostics;
[Ans88]

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wSparse matrix
	Spatial weights sparse matrix

	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product

	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)

	vmboolean
	if True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> np.set_printoptions(suppress=True) #prevent scientific format
>>> db = libpysal.io.open(examples.get_path("south.dbf"),'r')
>>> y_name = "HR90"
>>> y = np.array(db.by_col(y_name))
>>> y.shape = (len(y),1)
>>> x_names = ["RD90","PS90","UE90","DV90"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = libpysal.io.open(libpysal.examples.get_path("south_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "south_q.gal"
>>> w.transform = 'r'
>>> mlerr = ML_Error(y,x,w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name)
>>> np.around(mlerr.betas, decimals=4)
array([[6.1492],
 [4.4024],
 [1.7784],
 [-0.3781],
 [0.4858],
 [0.2991]])
>>> "{0:.4f}".format(mlerr.lam)
'0.2991'
>>> "{0:.4f}".format(mlerr.mean_y)
'9.5493'
>>> "{0:.4f}".format(mlerr.std_y)
'7.0389'
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([1.0648, 0.0555, 0.0454, 0.0061, 0.0148, 0.0014])
>>> np.around(mlerr.sig2, decimals=4)
array([[32.4069]])
>>> "{0:.4f}".format(mlerr.logll)
'-4471.4071'
>>> "{0:.4f}".format(mlerr.aic)
'8952.8141'
>>> "{0:.4f}".format(mlerr.schwarz)
'8979.0779'
>>> "{0:.4f}".format(mlerr.pr2)
'0.3058'
>>> "{0:.4f}".format(mlerr.utu)
'48534.9148'
>>> np.around(mlerr.std_err, decimals=4)
array([1.0319, 0.2355, 0.2132, 0.0784, 0.1217, 0.0378])
>>> np.around(mlerr.z_stat, decimals=4)
array([[5.9593, 0.],
 [18.6902, 0.],
 [8.3422, 0.],
 [-4.8233, 0.],
 [3.9913, 0.0001],
 [7.9089, 0.]])
>>> mlerr.name_y
'HR90'
>>> mlerr.name_x
['CONSTANT', 'RD90', 'PS90', 'UE90', 'DV90', 'lambda']
>>> mlerr.name_w
'south_q.gal'
>>> mlerr.name_ds
'south.dbf'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)'

	Attributes

	
	betasarray
	(k+1)x1 array of estimated coefficients (rho first)

	lamfloat
	estimate of spatial autoregressive coefficient

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding lambda)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	methodstring
	log Jacobian method
if ‘full’: brute force (full matrix computations)

	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	varbarray
	Variance covariance matrix (k+1 x k+1) - includes var(lambda)

	vm1array
	variance covariance matrix for lambda, sigma (2 x 2)

	sig2float
	Sigma squared used in computations

	logllfloat
	maximized log-likelihood (including constant terms)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	utufloat
	Sum of squared residuals

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

Methods

	get_x_lag

	

	
__init__(self, y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, w[, method, epsilon, …])

	Initialize self.

	get_x_lag(self, w, regimes_att)

	

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.GM_Lag

spreg.GM_Lag

	
class spreg.GM_Lag(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with results and diagnostics;
Anselin (1988) [Ans88]

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x); cannot be
used in combination with h

	wpysal W object
	Spatial weights object

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diagboolean
	If True, then compute Anselin-Kelejian test

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. Since we will need some tests for our
model, we also import the diagnostics module.

>>> import numpy as np
>>> import libpysal
>>> import spreg.diagnostics as D

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the HOVAL column (home value) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is
optional. The default most basic model to be run would be:

>>> reg=GM_Lag(y, X, w=w, w_lags=2, name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[45.30170561],
 [0.62088862],
 [-0.48072345],
 [0.02836221]])

Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([17.91278862, 0.52486082, 0.1822815 , 0.31740089])

But we can also run models that incorporates corrected standard errors
following the White procedure. For that, we will have to include the
optional parameter robust='white':

>>> reg=GM_Lag(y, X, w=w, w_lags=2, robust='white', name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[45.30170561],
 [0.62088862],
 [-0.48072345],
 [0.02836221]])

And we can access the standard errors from the model object:

>>> reg.std_err
array([20.47077481, 0.50613931, 0.20138425, 0.38028295])

The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will assume that
CRIME is actually endogenous and we decide to instrument for it with
DISCBD (distance to the CBD). We reload the X including INC only and
define CRIME as endogenous and DISCBD as instrument:

>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))

And we can run the model again:

>>> reg=GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> reg.betas
array([[100.79359082],
 [-0.50215501],
 [-1.14881711],
 [-0.38235022]])

Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([53.0829123 , 1.02511494, 0.57589064, 0.59891744])

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	kstarinteger
	Number of endogenous variables.

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	robuststring
	Adjustment for robust standard errors

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	utufloat
	Sum of squared residuals

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	sig2nfloat
	Sigma squared (computed with n in the denominator)

	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)

	hthfloat
	\(H'H\)

	hthifloat
	\((H'H)^{-1}\)

	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\)

	zthhthiarray
	\(Z'H(H'H)^{-1}\)

	pfora1a2array
	n(zthhthi)’varb

	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.

Attributes

	mean_y

	

	pfora1a2

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.GM_Error

spreg.GM_Error

	
class spreg.GM_Error(y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model, with results and diagnostics; based
on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wpysal W object
	Spatial weights object (always needed)

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array([dbf.by_col('HOVAL')]).T

Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> names_to_extract = ['INC', 'CRIME']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error(y, x, w=w, name_y='hoval', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas).

>>> print model.name_x
['CONSTANT', 'income', 'crime', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[47.6946],
 [0.7105],
 [-0.5505],
 [0.3257]])
>>> np.around(model.std_err, decimals=4)
array([12.412 , 0.5044, 0.1785])
>>> np.around(model.z_stat, decimals=6)
array([[3.84261100e+00, 1.22000000e-04],
 [1.40839200e+00, 1.59015000e-01],
 [-3.08424700e+00, 2.04100000e-03]])
>>> round(model.sig2,4)
198.5596

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	vmarray
	Variance covariance matrix (kxk)

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, w[, vm, name_y, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Error_Het

spreg.GM_Error_Het

	
class spreg.GM_Error_Het(y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity, with results
and diagnostics; based on [ADKP10], following
[Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wpysal W object
	Spatial weights object

	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional
stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from [ADKP10].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het(y, X, w=w, step1c=True, name_y='home value', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter.

>>> print reg.name_x
['CONSTANT', 'income', 'crime', 'lambda']

Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[47.9963 11.479]
 [0.7105 0.3681]
 [-0.5588 0.1616]
 [0.4118 0.168]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	vmarray
	Variance covariance matrix (kxk)

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	xtxfloat
	\(X'X\)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, w[, max_iter, epsilon, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Error_Hom

spreg.GM_Error_Hom

	
class spreg.GM_Error_Hom(y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity, with results
and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin
(2011) [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	wpysal W object
	Spatial weights object

	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom(y, X, w=w, A1='hom_sc', name_y='home value', name_x=['income', 'crime'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[47.9479 12.3021]
 [0.7063 0.4967]
 [-0.556 0.179]
 [0.4129 0.1835]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from Arraiz et al.

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	vmarray
	Variance covariance matrix (kxk)

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	xtxfloat
	\(X'X\)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, w[, max_iter, epsilon, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo

spreg.GM_Combo

	
class spreg.GM_Combo(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with endogenous variables,
with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (always needed)

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo(y, X, w=w, name_y='crime', name_x=['income'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can check the betas:

>>> print reg.name_z
['CONSTANT', 'income', 'W_crime', 'lambda']
>>> print np.around(np.hstack((reg.betas[:-1],np.sqrt(reg.vm.diagonal()).reshape(3,1))),3)
[[39.059 11.86]
 [-1.404 0.391]
 [0.467 0.2]]

And lambda:

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [-0.048]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include HOVAL (home value) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo(y, X, yd, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'hoval', 'W_crime', 'lambda']
>>> names = np.array(reg.name_z).reshape(5,1)
>>> print np.hstack((names[0:4,:], np.around(np.hstack((reg.betas[:-1], np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)))
[['CONSTANT' '50.0944' '14.3593']
 ['inc' '-0.2552' '0.5667']
 ['hoval' '-0.6885' '0.3029']
 ['W_crime' '0.4375' '0.2314']]

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda: [0.254]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	zarray
	nxk array of variables (combination of x and yend)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	sig2float
	Sigma squared used in computations (based on filtered
residuals)

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo_Het

spreg.GM_Combo_Het

	
class spreg.GM_Combo_Het(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on
[ADKP10], following [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (always needed)

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from [ADKP10].

	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Het(y, X, w=w, step1c=True, name_y='hoval', name_x=['income'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'income', 'W_hoval', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[9.9753 14.1435]
 [1.5742 0.374]
 [0.1535 0.3978]
 [0.2103 0.3924]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'W_hoval', 'lambda']
>>> print np.round(reg.betas,4)
[[113.9129]
 [-0.3482]
 [-1.3566]
 [-0.5766]
 [0.6561]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	hthfloat
	\(H'H\)

	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo_Hom

spreg.GM_Combo_Hom

	
class spreg.GM_Combo_Hom(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with homoskedasticity and
endogenous variables, with results and diagnostics; based on Drukker et
al. (2013) [DEP13], following Anselin (2011) [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (always necessary)

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in [ADKP10].
If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Hom(y, X, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[10.1254 15.2871]
 [1.5683 0.4407]
 [0.1513 0.4048]
 [0.2103 0.4226]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc', name_ds='columbus')
>>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']])
>>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5)))
[['CONSTANT' '111.7705' '67.75191']
 ['inc' '-0.30974' '1.16656']
 ['crime' '-1.36043' '0.6841']
 ['W_hoval' '-0.52908' '0.84428']
 ['lambda' '0.60116' '0.18605']]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))

	sig2float
	Sigma squared used in computations (based on filtered
residuals)

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	hthfloat
	\(H'H\)

	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error

spreg.GM_Endog_Error

	
class spreg.GM_Endog_Error(y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (always needed)

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array([dbf.by_col('CRIME')]).T

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> x = np.array([dbf.by_col('INC')]).T

In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yend = np.array([dbf.by_col('HOVAL')]).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = np.array([dbf.by_col('DISCBD')]).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read()

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> from spreg import GM_Endog_Error
>>> model = GM_Endog_Error(y, x, yend, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included.

>>> print model.name_z
['CONSTANT', 'inc', 'hoval', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[82.573],
 [0.581],
 [-1.4481],
 [0.3499]])
>>> np.around(model.std_err, decimals=4)
array([16.1381, 1.3545, 0.7862])

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	zarray
	nxk array of variables (combination of x and yend)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	
__init__(self, y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, w[, vm, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error_Het

spreg.GM_Endog_Error_Het

	
class spreg.GM_Endog_Error_Het(y, x, yend, q, w, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on
[ADKP10], following [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from [ADKP10].

	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[55.3971 28.8901]
 [0.4656 0.7731]
 [-0.6704 0.468]
 [0.4114 0.1777]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	hthfloat
	\(H'H\)

	
__init__(self, y, x, yend, q, w, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, w[, max_iter, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error_Hom

spreg.GM_Endog_Error_Hom

	
class spreg.GM_Endog_Error_Hom(y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity and endogenous
variables, with results and diagnostics; based on Drukker et al. (2013)
[DEP13], following Anselin (2011) [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in [ADKP10].
If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[55.3658 23.496]
 [0.4643 0.7382]
 [-0.669 0.3943]
 [0.4321 0.1927]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	hthfloat
	\(H'H\)

	
__init__(self, y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, w[, max_iter, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.TSLS

spreg.TSLS

	
class spreg.TSLS(y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Two stage least squares with results and diagnostics.

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)

	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diagboolean
	If True, then compute Anselin-Kelejian test (requires w)

	vmboolean
	If True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous) and the
instruments. If we want to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is optional.

>>> reg = TSLS(y, X, yd, q, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.betas
[[88.46579584]
 [0.5200379]
 [-1.58216593]]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)

	kstarinteger
	Number of endogenous variables.

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments

	zarray
	nxk array of variables (combination of x and yend)

	harray
	nxl array of instruments (combination of x and q)

	robuststring
	Adjustment for robust standard errors

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)

	utufloat
	Sum of squared residuals

	sig2float
	Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float

	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	titlestring
	Name of the regression method used

	sig2nfloat
	Sigma squared (computed with n in the denominator)

	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)

	hthfloat
	\(H'H\)

	hthifloat
	\((H'H)^{-1}\)

	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\)

	zthhthiarray
	\(Z'H(H'H)^{-1}\)

	pfora1a2array
	\(n(zthhthi)'varb\)

	
__init__(self, y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q[, w, robust, …])

	Initialize self.

Attributes

	mean_y

	

	pfora1a2

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.ThreeSLS

spreg.ThreeSLS

	
class spreg.ThreeSLS(bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	User class for 3SLS estimation

	Parameters

	
	bigydictionary
	with vector for dependent variable by equation

	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)

	bigyenddictionary
	with matrix of endogenous variables by equation

	bigqdictionary
	with matrix of instruments by equation

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True.

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used

	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified.
is done when sur_stackxy is used

	name_bigyenddictionary
	with names of endogenous variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used

	name_bigqdictionary
	with names of instrumental variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used.

	name_dsstring
	name for the data set.

	name_regimesstring
	name of regime variable for use in the output.

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = ThreeSLS(bigy,bigX,bigyend,bigq,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT")
>>> reg.b3SLS
{0: array([[6.92426353],
 [1.42921826],
 [0.00049435],
 [3.5829275]]), 1: array([[7.62385875],
 [1.65031181],
 [-0.21682974],
 [3.91250428]])}

>>> reg.tsls_inf
{0: array([[0.23220853, 29.81916157, 0.],
 [0.10373417, 13.77770036, 0.],
 [0.03086193, 0.01601807, 0.98721998],
 [0.11131999, 32.18584124, 0.]]), 1: array([[0.28739415, 26.52753638, 0.],
 [0.09597031, 17.19606554, 0.],
 [0.04089547, -5.30204786, 0.00000011],
 [0.13586789, 28.79638723, 0.]])}

	Attributes

	
	bigydictionary
	with y values

	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation

	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s

	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s

	n_eqint
	number of equations

	nint
	number of observations in each cross-section

	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation

	b2SLSdictionary
	with 2SLS regression coefficients for each equation

	tslsEarray
	N x n_eq array with OLS residuals for each equation

	b3SLSdictionary
	with 3SLS regression coefficients for each equation

	varbarray
	variance-covariance matrix

	sigarray
	Sigma matrix of inter-equation error covariances

	bigEarray
	n by n_eq array of residuals

	corrarray
	inter-equation 3SLS error correlation matrix

	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation

	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value

	name_dsstring
	name for the data set

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_bigyenddictionary
	with names of endogenous variables for each
equation

	name_bigqdictionary
	with names of instrumental variables for each
equations

	name_regimesstring
	name of regime variable for use in the output

	
__init__(self, bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX, bigyend, bigq[, …])

	Initialize self.

 spreg.OLS_Regimes

spreg.OLS_Regimes

	
class spreg.OLS_Regimes(y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)

	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given. If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.

	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.

	nonspat_diagboolean
	If True, then compute non-spatial diagnostics on
the regression.

	spat_diagboolean
	If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.

	moranboolean
	If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.

	white_testboolean
	If True, compute White’s specification robust test.
(requires nonspat_diag=True)

	vmboolean
	If True, include variance-covariance matrix in summary
results

	constant_regi: string, optional
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime (default)

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it
the dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = db.by_col(y_var)
>>> y = np.array(y).reshape(len(y), 1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

We can now run the regression and then have a summary of the output
by typing: olsr.summary
Alternatively, we can just check the betas and standard errors of the
parameters:

>>> olsr = OLS_Regimes(y, x, regimes, nonspat_diag=False, name_y=y_var, name_x=['PS90','UE90'], name_regimes=r_var, name_ds='NAT')
>>> olsr.betas
array([[0.39642899],
 [0.65583299],
 [0.48703937],
 [5.59835],
 [1.16210453],
 [0.53163886]])
>>> np.sqrt(olsr.vm.diagonal())
array([0.24816345, 0.09662678, 0.03628629, 0.46894564, 0.21667395,
 0.05945651])
>>> olsr.cols2regi
'all'

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	robuststring
	Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	r2float
	R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	ar2float
	Adjusted R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	utufloat
	Sum of squared residuals

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2MLfloat
	Sigma squared (maximum likelihood)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	f_stattuple
	Statistic (float), p-value (float)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	logllfloat
	Log likelihood
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	aicfloat
	Akaike information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	schwarzfloat
	Schwarz information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	t_statlist of tuples
	t statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mulCollifloat
	Multicollinearity condition number
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	jarque_beradictionary
	‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	breusch_pagandictionary
	‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	koenker_bassett: dictionary
	‘kb’: Koenker-Bassett statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int). Only available in dictionary
‘multi’ when multiple regressions (see ‘multi’ below for details).

	whitedictionary
	‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	lm_errortuple
	Lagrange multiplier test for spatial error model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	lm_lagtuple
	Lagrange multiplier test for spatial lag model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	rlm_errortuple
	Robust lagrange multiplier test for spatial error model;
tuple contains the pair (statistic, p-value), where each
is a float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	rlm_lagtuple
	Robust lagrange multiplier test for spatial lag model;
tuple contains the pair (statistic, p-value), where each
is a float. Only available in dictionary ‘multi’ when
multiple regressions (see ‘multi’ below for details)

	lm_sarmatuple
	Lagrange multiplier test for spatial SARMA model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	moran_restuple
	Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

	titlestring
	Name of the regression method used.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2nfloat
	Sigma squared (computed with n in the denominator)

	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)

	xtxfloat
	\(X'X\). Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	xtxifloat
	\((X'X)^{-1}\). Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each observation to
a regime. Assumed to be aligned with ‘x’.

	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime.

	cols2regilist
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate.

	nrint
	Number of different regimes in the ‘regimes’ list.

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression.

	
__init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes[, w, robust, …])

	Initialize self.

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.ML_Lag_Regimes

spreg.ML_Lag_Regimes

	
class spreg.ML_Lag_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial lag model with regimes (note no consistency
checks, diagnostics or constants added) [Ans88].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime (default)

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	wSparse matrix
	Spatial weights sparse matrix

	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)

	vmboolean
	if True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> db = libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'

Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

>>> mllag = ML_Lag_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mllag.betas, decimals=4)
array([[-15.0059],
 [4.496],
 [-0.0318],
 [0.35],
 [-4.5404],
 [3.9219],
 [-0.1702],
 [0.8194],
 [0.5385]])
>>> "{0:.6f}".format(mllag.rho)
'0.538503'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
 0.0116, 0.0486, 0.004 , 390.7274])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([47.42 , 2.3953, 0.0051, 0.0648, 69.6765, 3.2066,
 0.0116, 0.0486, 0.004])
>>> "{0:.6f}".format(mllag.sig2)
'200.044334'
>>> "{0:.6f}".format(mllag.logll)
'-864.985056'
>>> "{0:.6f}".format(mllag.aic)
'1747.970112'
>>> "{0:.6f}".format(mllag.schwarz)
'1778.136835'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)'

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	(k+1)x1 array of estimated coefficients (rho first)

	rhofloat
	estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	uarray
	nx1 array of residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	methodstring
	log Jacobian method.
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition

	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients

	vm1array
	Variance covariance matrix (k+2 x k+2), includes sig2
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	logllfloat
	maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	aicfloat
	Akaike information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	schwarzfloat
	Schwarz criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	predy_earray
	predicted values from reduced form

	e_predarray
	prediction errors using reduced form predicted values

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: [‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	regime_err_sep: boolean
	always set to False - kept for compatibility with other
regime models

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Methods

	ML_Lag_Regimes_Multi

	

	
__init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	ML_Lag_Regimes_Multi(self, y, x, w_i, w, …)

	

	__init__(self, y, x, regimes[, w, …])

	Initialize self.

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.ML_Error_Regimes

spreg.ML_Error_Regimes

	
class spreg.ML_Error_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial error model with regimes (note no consistency
checks, diagnostics or constants added); Anselin (1988) [Anselin1988]

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	wSparse matrix
	Spatial weights sparse matrix

	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition

	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	Always False, kept for consistency in function call, ignored.

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)

	vmboolean
	if True, include variance-covariance matrix in summary
results

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import libpysal
>>> db = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'

Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")

Now we can run the regression with all parameters:

>>> mlerr = ML_Error_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names, name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mlerr.betas, decimals=4)
array([[-2.3949],
 [4.8738],
 [-0.0291],
 [0.3328],
 [31.7962],
 [2.981],
 [-0.2371],
 [0.8058],
 [0.6177]])
>>> "{0:.6f}".format(mlerr.lam)
'0.617707'
>>> "{0:.6f}".format(mlerr.mean_y)
'44.307180'
>>> "{0:.6f}".format(mlerr.std_y)
'23.606077'
>>> np.around(mlerr.vm1, decimals=4)
array([[0.005 , -0.3535],
 [-0.3535, 441.3039]])
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([58.5055, 2.4295, 0.0072, 0.0639, 80.5925, 3.161 ,
 0.012 , 0.0499, 0.005])
>>> np.around(mlerr.sig2, decimals=4)
array([[209.6064]])
>>> "{0:.6f}".format(mlerr.logll)
'-870.333106'
>>> "{0:.6f}".format(mlerr.aic)
'1756.666212'
>>> "{0:.6f}".format(mlerr.schwarz)
'1783.481077'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES (METHOD = full)'

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	(k+1)x1 array of estimated coefficients (lambda last)

	lamfloat
	estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	methodstring
	log Jacobian method.
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition

	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients

	vm1array
	variance covariance matrix for lambda, sigma (2 x 2)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	logllfloat
	maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Methods

	get_x_lag

	

	
__init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes[, w, …])

	Initialize self.

	get_x_lag(self, w, regimes_att)

	

Attributes

	mean_y

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.GM_Lag_Regimes

spreg.GM_Lag_Regimes

	
class spreg.GM_Lag_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with regimes;
[Ans88]

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x); cannot be
used in combination with h

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	wpysal W object
	Spatial weights object

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	regime_lag_sep: boolean
	If True (default), the spatial parameter for spatial lag is also
computed according to different regimes. If False,
the spatial parameter is fixed accross regimes.
Option valid only when regime_err_sep=True

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.
If ‘hac’, then a HAC consistent estimator of the
variance-covariance matrix is given.
If ‘ogmm’, then Optimal GMM is used to estimate
betas and the variance-covariance matrix.
Default set to None.

	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.

	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.

	spat_diagboolean
	If True, then compute Anselin-Kelejian test

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> from libpysal import weights
>>> w = weights.Rook.from_shapefile(examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[1.28897623],
 [0.79777722],
 [0.56366891],
 [8.73327838],
 [1.30433406],
 [0.62418643],
 [-0.39993716]])

Once the model is run, we can have a summary of the output by typing:
model.summary . Alternatively, we can obtain the standard error of
the coefficient estimates by calling:

>>> model.std_err
array([0.44682888, 0.14358192, 0.05655124, 1.06044865, 0.20184548,
 0.06118262, 0.12387232])

In the example above, all coefficients but the spatial lag vary
according to the regime. It is also possible to have the spatial lag
varying according to the regime, which effective will result in an
independent spatial lag model estimated for each regime. To run these
models, the argument regime_lag_sep must be set to True:

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> print np.hstack((np.array(model.name_z).reshape(8,1),model.betas,np.sqrt(model.vm.diagonal().reshape(8,1))))
[['0_CONSTANT' '1.36584769' '0.39854720']
 ['0_PS90' '0.80875730' '0.11324884']
 ['0_UE90' '0.56946813' '0.04625087']
 ['0_W_HR90' '-0.4342438' '0.13350159']
 ['1_CONSTANT' '7.90731073' '1.63601874']
 ['1_PS90' '1.27465703' '0.24709870']
 ['1_UE90' '0.60167693' '0.07993322']
 ['1_W_HR90' '-0.2960338' '0.19934459']]

Alternatively, we can type: ‘model.summary’ to see the organized results output.
The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will add the endogenous
variable RD90 (resource deprivation) and we decide to instrument for it with
FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And we can run the model again:

>>> model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[3.42195202],
 [1.03311878],
 [0.14308741],
 [8.99740066],
 [1.91877758],
 [-0.32084816],
 [2.38918212],
 [3.67243761],
 [0.06959139]])

Once the model is run, we can obtain the standard error of the coefficient
estimates. Alternatively, we can have a summary of the output by typing:
model.summary

>>> model.std_err
array([0.49163311, 0.12237382, 0.05633464, 0.72555909, 0.17250521,
 0.06749131, 0.27370369, 0.25106224, 0.05804213])

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	kstarinteger
	Number of endogenous variables.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	robuststring
	Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	utufloat
	Sum of squared residuals

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_gwkstring
	Name of kernel weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2nfloat
	Sigma squared (computed with n in the denominator)

	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)

	hthfloat
	\(H'H\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	hthifloat
	\((H'H)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zthhthiarray
	\(Z'H(H'H)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pfora1a2array
	n(zthhthi)’varb
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime.

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

Methods

	GM_Lag_Regimes_Multi

	

	sp_att_reg

	

	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	GM_Lag_Regimes_Multi(self, y, x, w_i, w, …)

	

	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.

	sp_att_reg(self, w_i, regi_ids, wy)

	

Attributes

	mean_y

	

	pfora1a2

	

	sig2n

	

	sig2n_k

	

	std_y

	

	utu

	

	vm

	

 spreg.GM_Error_Regimes

spreg.GM_Error_Regimes

	
class spreg.GM_Error_Regimes(y, x, regimes, w, vm=False, name_y=None, name_x=None, name_w=None, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with regimes, with results and diagnostics;
based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string, optional
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(model.betas, decimals=6)
array([[0.074807],
 [0.786107],
 [0.538849],
 [5.103756],
 [1.196009],
 [0.600533],
 [0.364103]])
>>> np.around(model.std_err, decimals=6)
array([0.379864, 0.152316, 0.051942, 0.471285, 0.19867 , 0.057252])
>>> np.around(model.z_stat, decimals=6)
array([[0.196932, 0.843881],
 [5.161042, 0.],
 [10.37397 , 0.],
 [10.829455, 0.],
 [6.02007 , 0.],
 [10.489215, 0.]])
>>> np.around(model.sig2, decimals=6)
28.172732

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	vmarray
	Variance covariance matrix (kxk)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, w, vm=False, name_y=None, name_x=None, name_w=None, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes, w[, vm, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Error_Het_Regimes

spreg.GM_Error_Het_Regimes

	
class spreg.GM_Error_Het_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with heteroskedasticity and regimes;
based on Arraiz et al [ADKP10], following Anselin [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime (default)

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.

	max_iterint
	Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from Arraiz et al.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(reg.betas, decimals=6)
array([[0.009121],
 [0.812973],
 [0.549355],
 [5.00279],
 [1.200929],
 [0.614681],
 [0.429277]])
>>> np.around(reg.std_err, decimals=6)
array([0.355844, 0.221743, 0.059276, 0.686764, 0.35843 , 0.092788,
 0.02524])

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	vmarray
	Variance covariance matrix (kxk)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes

	‘many’: a vector of ones is appended to x and considered different per regime

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes, w[, max_iter, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Error_Hom_Regimes

spreg.GM_Error_Hom_Regimes

	
class spreg.GM_Error_Hom_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with homoskedasticity, with regimes,
results and diagnostics; based on Drukker et al. (2013) [DEP13], following
Anselin (2011) [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_ds='NAT')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters. Alternatively,
we can have a summary of the output by typing: model.summary
>>> print reg.name_x
[‘0_CONSTANT’, ‘0_PS90’, ‘0_UE90’, ‘1_CONSTANT’, ‘1_PS90’, ‘1_UE90’, ‘lambda’]

>>> print np.around(reg.betas,4)
[[0.069]
 [0.7885]
 [0.5398]
 [5.0948]
 [1.1965]
 [0.6018]
 [0.4104]]

>>> print np.sqrt(reg.vm.diagonal())
[0.39105854 0.15664624 0.05254328 0.48379958 0.20018799 0.05834139
 0.01882401]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	vmarray
	Variance covariance matrix (kxk)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	xtxfloat
	\(X'X\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes, w[, max_iter, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo_Regimes

spreg.GM_Combo_Regimes

	
class spreg.GM_Combo_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with regimes and endogenous
variables, with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	wpysal W object
	Spatial weights object (always needed)

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Combo_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can have a summary of the
output by typing: model.summary
Alternatively, we can check the betas:

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(model.betas,4)
[[1.4607]
 [0.958]
 [0.5658]
 [9.113]
 [1.1338]
 [0.6517]
 [-0.4583]
 [0.6136]]

And lambda:

>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [0.6136]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> model = GM_Combo_Regimes(y, x, regimes, yd, q, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print model.betas
[[3.41963782]
 [1.04065841]
 [0.16634393]
 [8.86544628]
 [1.85120528]
 [-0.24908469]
 [2.43014046]
 [3.61645481]
 [0.03308671]
 [0.18684992]]
>>> print np.sqrt(model.vm.diagonal())
[0.53067577 0.13271426 0.06058025 0.76406411 0.17969783 0.07167421
 0.28943121 0.25308326 0.06126529]
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda: [0.1868]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo_Hom_Regimes

spreg.GM_Combo_Hom_Regimes

	
class spreg.GM_Combo_Hom_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with homoskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Drukker et al. (2013) [DEP13], following Anselin (2011)
[Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object (always needed)

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed across regimes.

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional. We can have a
summary of the output by typing: model.summary
Alternatively, we can check the betas:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[1.4607]
 [0.9579]
 [0.5658]
 [9.1129]
 [1.1339]
 [0.6517]
 [-0.4583]
 [0.6634]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, yd, q, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[3.4196478]
 [1.04065595]
 [0.16630304]
 [8.86570777]
 [1.85134286]
 [-0.24921597]
 [2.43007651]
 [3.61656899]
 [0.03315061]
 [0.22636055]]
>>> print np.sqrt(reg.vm.diagonal())
[0.53989913 0.13506086 0.06143434 0.77049956 0.18089997 0.07246848
 0.29218837 0.25378655 0.06184801 0.06323236]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [0.2264]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed across regimes.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Combo_Het_Regimes

spreg.GM_Combo_Het_Regimes

	
class spreg.GM_Combo_Het_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with heteroskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Arraiz et al [ADKP10], following Anselin [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object (always needed)

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed across regimes.

	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.

	lag_qboolean
	If True, then include spatial lags of the additional
instruments (q).

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from [ADKP10].

	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional. We can have a
summary of the output by typing: model.summary
Alternatively, we can check the betas:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[1.4613]
 [0.9587]
 [0.5658]
 [9.1157]
 [1.1324]
 [0.6518]
 [-0.4587]
 [0.7174]]

This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor. We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, yd, q, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[3.41936197]
 [1.04071048]
 [0.16747219]
 [8.85820215]
 [1.847382]
 [-0.24545394]
 [2.43189808]
 [3.61328423]
 [0.03132164]
 [0.29544224]]
>>> print np.sqrt(reg.vm.diagonal())
[0.53103804 0.20835827 0.05755679 1.00496234 0.34332131 0.10259525
 0.3454436 0.37932794 0.07611667 0.07067059]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda: [0.2954]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	e_predarray
	nx1 array of residuals (using reduced form)

	predyarray
	nx1 array of predicted y values

	predy_earray
	nx1 array of predicted y values (using reduced form)

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed across regimes.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error_Regimes

spreg.GM_Endog_Error_Regimes

	
class spreg.GM_Endog_Error_Regimes(y, x, yend, q, regimes, w, cores=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with regimes and endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Endog_Error_Regimes(y, x, yend, q, regimes, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']
>>> np.around(model.betas, decimals=5)
array([[3.59718],
 [1.0652],
 [0.15822],
 [9.19754],
 [1.88082],
 [-0.24878],
 [2.46161],
 [3.57943],
 [0.25564]])
>>> np.around(model.std_err, decimals=6)
array([0.522633, 0.137555, 0.063054, 0.473654, 0.18335 , 0.072786,
 0.300711, 0.240413])

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)
Sigma squared used in computations

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi[‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sep: boolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, yend, q, regimes, w, cores=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error_Hom_Regimes

spreg.GM_Endog_Error_Hom_Regimes

	
class spreg.GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, max_iter=1, epsilon=1e-05, A1='het', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with homoskedasticity, regimes and
endogenous variables.
Based on Drukker et al. (2013) [DEP13], following Anselin (2011)
[Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	regime_lag_sepboolean
	Always False, kept for consistency, ignored.

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']

>>> print np.around(reg.betas,4)
[[3.5973]
 [1.0652]
 [0.1582]
 [9.198]
 [1.8809]
 [-0.2489]
 [2.4616]
 [3.5796]
 [0.2541]]

>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[0.5204 0.1371 0.0629 0.4721 0.1824 0.0725 0.2992 0.2395 0.024]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	hthfloat
	\(H'H\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_regi[‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, yend, q, regimes, w, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, max_iter=1, epsilon=1e-05, A1='het', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.GM_Endog_Error_Het_Regimes

spreg.GM_Endog_Error_Het_Regimes

	
class spreg.GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with heteroskedasticity, regimes and
endogenous variables, with results and diagnostics; based on Arraiz et al
[ADKP10], following Anselin [Ans11].

	Parameters

	
	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	wpysal W object
	Spatial weights object

	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	regime_lag_sepboolean
	Always False, kept for consistency, ignored.

	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.

	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.

	step1cboolean
	If True, then include Step 1c from [ADKP10].

	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.

	vmboolean
	If True, include variance-covariance matrix in summary
results

	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_qlist of strings
	Names of instruments for use in output

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regime variable for use in the output

Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n,)
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)

Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T

For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T

The different regimes in this data are given according to the North and
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)

Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')

Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']

>>> print np.around(reg.betas,4)
[[3.5944]
 [1.065]
 [0.1587]
 [9.184]
 [1.8784]
 [-0.2466]
 [2.4617]
 [3.5756]
 [0.2908]]

>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[0.5043 0.2132 0.0581 0.6681 0.3504 0.0999 0.3686 0.3402 0.028]

	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)

	betasarray
	kx1 array of estimated coefficients

	uarray
	nx1 array of residuals

	e_filteredarray
	nx1 array of spatially filtered residuals

	predyarray
	nx1 array of predicted y values

	ninteger
	Number of observations

	kinteger
	Number of variables for which coefficients are estimated
(including the constant).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yarray
	nx1 array for dependent variable

	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	mean_yfloat
	Mean of dependent variable

	std_yfloat
	Standard deviation of dependent variable

	vmarray
	Variance covariance matrix (kxk)

	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	std_errarray
	1xk array of standard errors of the betas
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	name_ystring
	Name of dependent variable for use in output

	name_xlist of strings
	Names of independent variables for use in output

	name_yendlist of strings
	Names of endogenous variables for use in output

	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output

	name_qlist of strings
	Names of external instruments

	name_hlist of strings
	Names of all instruments used in ouput

	name_wstring
	Name of weights matrix for use in output

	name_dsstring
	Name of dataset for use in output

	name_regimesstring
	Name of regimes variable for use in output

	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:

	‘one’: a vector of ones is appended to x and held constant across regimes.

	‘many’: a vector of ones is appended to x and considered different per regime (default).

	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.

	regime_err_sepboolean
	If True, a separate regression is run for each regime.

	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)

	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate

	nrint
	Number of different regimes in the ‘regimes’ list

	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression

	
__init__(self, y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.

Attributes

	mean_y

	

	std_y

	

 spreg.SUR

spreg.SUR

	
class spreg.SUR(bigy, bigX, w=None, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, iter=False, maxiter=5, epsilon=1e-05, verbose=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR estimation, both two step as well as iterated

	Parameters

	
	bigydictionary
	with vector for dependent variable by equation

	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)

	wspatial weights object
	default = None

	regimeslist
	default = None.
List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True

	spat_diagboolean
	flag for spatial diagnostics, default = False

	iterboolean
	whether or not to use iterated estimation.
default = False

	maxiterint
	maximum iterations; default = 5

	epsilonfloat
	precision criterion to end iterations.
default = 0.00001

	verboseboolean
	flag to print out iteration number and value
of log det(sig) at the beginning and the end of the iteration

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified
is done when sur_stackxy is used

	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified
is done when sur_stackxy is used

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]

Although not required for this method, we can load a weights matrix file
to allow for spatial diagnostics.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

We can now run the regression and then have a summary of the output by typing:
‘print(reg.summary)’

>>> reg = SUR(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,spat_diag=True,name_ds="nat")
>>> print(reg.summary)
REGRESSION

SUMMARY OF OUTPUT: SEEMINGLY UNRELATED REGRESSIONS (SUR)
--
Data set : nat
Weights matrix : unknown
Number of Equations : 2 Number of Observations: 3085
Log likelihood (SUR): -19902.966 Number of Iterations : 1

SUMMARY OF EQUATION 1

Dependent Variable : HR80 Number of Variables : 3
Mean dependent var : 6.9276 Degrees of Freedom : 3082
S.D. dependent var : 6.8251

--
 Variable Coefficient Std.Error z-Statistic Probability
--
 Constant_1 5.1390718 0.2624673 19.5798587 0.0000000
 PS80 0.6776481 0.1219578 5.5564132 0.0000000
 UE80 0.2637240 0.0343184 7.6846277 0.0000000
--

SUMMARY OF EQUATION 2

Dependent Variable : HR90 Number of Variables : 3
Mean dependent var : 6.1829 Degrees of Freedom : 3082
S.D. dependent var : 6.6403

--
 Variable Coefficient Std.Error z-Statistic Probability
--
 Constant_2 3.6139403 0.2534996 14.2561949 0.0000000
 PS90 1.0260715 0.1121662 9.1477755 0.0000000
 UE90 0.3865499 0.0341996 11.3027760 0.0000000
--

REGRESSION DIAGNOSTICS
 TEST DF VALUE PROB
 LM test on Sigma 1 680.168 0.0000
 LR test on Sigma 1 768.385 0.0000

OTHER DIAGNOSTICS - CHOW TEST BETWEEN EQUATIONS
 VARIABLES DF VALUE PROB
 Constant_1, Constant_2 1 26.729 0.0000
 PS80, PS90 1 8.241 0.0041
 UE80, UE90 1 9.384 0.0022

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST DF VALUE PROB
Lagrange Multiplier (error) 2 1333.586 0.0000
Lagrange Multiplier (lag) 2 1275.821 0.0000

ERROR CORRELATION MATRIX
 EQUATION 1 EQUATION 2
 1.000000 0.469548
 0.469548 1.000000
================================ END OF REPORT =====================================

	Attributes

	
	bigydictionary
	with y values

	bigXdictionary
	with X values

	bigXXdictionary
	with \(X_t'X_r\) cross-products

	bigXydictionary
	with \(X_t'y_r\) cross-products

	n_eqint
	number of equations

	nint
	number of observations in each cross-section

	bigKarray
	vector with number of explanatory variables (including constant)
for each equation

	bOLSdictionary
	with OLS regression coefficients for each equation

	olsEarray
	N x n_eq array with OLS residuals for each equation

	bSURdictionary
	with SUR regression coefficients for each equation

	varbarray
	variance-covariance matrix

	bigEarray
	n by n_eq array of residuals

	sig_olsarray
	Sigma matrix for OLS residuals (diagonal)

	ldetS0float
	log det(Sigma) for null model (OLS by equation)

	niterint
	number of iterations (=0 for iter=False)

	corrarray
	inter-equation error correlation matrix

	llikfloat
	log-likelihood (including the constant pi)

	sur_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation

	lrtesttuple
	Likelihood Ratio test on off-diagonal elements of sigma
(tuple with test,df,p-value)

	lmtesttuple
	Lagrange Multipler test on off-diagonal elements of sigma
(tuple with test,df,p-value)

	lmEtesttuple
	Lagrange Multiplier test on error spatial autocorrelation in SUR
(tuple with test, df, p-value)

	lmlagtesttuple
	Lagrange Multiplier test on spatial lag autocorrelation in SUR
(tuple with test, df, p-value)

	surchowarray
	list with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

	
__init__(self, bigy, bigX, w=None, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, iter=False, maxiter=5, epsilon=1e-05, verbose=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX[, w, regimes, …])

	Initialize self.

 spreg.SURerrorGM

spreg.SURerrorGM

	
class spreg.SURerrorGM(bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR Error estimation by Maximum Likelihood

	Parameters

	
	bigydictionary
	with vectors of dependent variable, one for
each equation

	bigXdictionary
	with matrices of explanatory variables,
one for each equation

	wspatial weights object
	

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	nonspat_diagboolean
	flag for non-spatial diagnostics, default = False

	spat_diagboolean
	flag for spatial diagnostics, default = False (to be implemented)

	vmboolean
	flag for asymptotic variance for lambda and Sigma,
default = False (to be implemented)

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified is done when
sur_stackxy is used

	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified is done when
sur_stackxy is used

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

Examples

First import pysal to load the spatial analysis tools.

>>> import pysal

Open data on NCOVR US County Homicides (3085 areas) using pysal.open().
This is the DBF associated with the NAT shapefile. Note that pysal.open()
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Equation 1 has HR80 as dependent
variable, and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

To run a spatial error model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURerrorGM(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds="NAT",name_w="nat_queen")
>>> reg.bSUR
{0: array([[3.9774686],
 [0.8902122],
 [0.43050364]]), 1: array([[2.93679118],
 [1.11002827],
 [0.48761542]])}
>>> reg.sur_inf
{0: array([[0.37251477, 10.67734473, 0.],
 [0.14224297, 6.25839157, 0.],
 [0.04322388, 9.95985619, 0.]]), 1: array([[0.33694902, 8.71583239, 0.],
 [0.13413626, 8.27537784, 0.],
 [0.04033105, 12.09032295, 0.]])}

	Attributes

	
	nint
	number of observations in each cross-section

	n_eqint
	number of equations

	bigydictionary
	with vectors of dependent variable, one for
each equation

	bigXdictionary
	with matrices of explanatory variables,
one for each equation

	bigKarray
	n_eq x 1 array with number of explanatory variables
by equation

	bigylagdictionary
	spatially lagged dependent variable

	bigXlagdictionary
	spatially lagged explanatory variable

	lamsurfloat
	spatial autoregressive coefficient in ML SUR Error

	bSURarray
	beta coefficients in ML SUR Error

	varbarray
	variance of beta coefficients in ML SUR Error

	sigarray
	error variance-covariance matrix in ML SUR Error

	bigEarray
	n by n_eq matrix of vectors of residuals for each equation

	sur_infarray
	inference for regression coefficients, stand. error, t, p

	surchowarray
	list with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

	
__init__(self, bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX, w[, regimes, …])

	Initialize self.

 spreg.SURerrorML

spreg.SURerrorML

	
class spreg.SURerrorML(bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, epsilon=1e-07, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR Error estimation by Maximum Likelihood

	Parameters

	
	bigydictionary
	with vectors of dependent variable, one for
each equation

	bigXdictionary
	with matrices of explanatory variables,
one for each equation

	wspatial weights object
	

	regimeslist
	default = None.
List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	epsilonfloat
	convergence criterion for ML iterations.
default 0.0000001

	nonspat_diagboolean
	flag for non-spatial diagnostics, default = True

	spat_diagboolean
	flag for spatial diagnostics, default = False

	vmboolean
	flag for asymptotic variance for lambda and Sigma,
default = False

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified is done when
sur_stackxy is used

	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified is done when
sur_stackxy is used

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Equation 1 has HR80 as dependent
variable, and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)

To run a spatial error model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURerrorML(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds="NAT",name_w="nat_queen")
>>> reg.bSUR
{0: array([[4.0222855],
 [0.88489646],
 [0.42402853]]), 1: array([[3.04923009],
 [1.10972634],
 [0.47075682]])}

>>> reg.sur_inf
{0: array([[0.36692181, 10.96224141, 0.],
 [0.14129077, 6.26294579, 0.],
 [0.04267954, 9.93517021, 0.]]), 1: array([[0.33139969, 9.20106497, 0.],
 [0.13352591, 8.31094371, 0.],
 [0.04004097, 11.756878 , 0.]])}

	Attributes

	
	nint
	number of observations in each cross-section

	n2int
	n/2

	n_eqint
	number of equations

	bigydictionary
	with vectors of dependent variable, one for
each equation

	bigXdictionary
	with matrices of explanatory variables,
one for each equation

	bigKarray
	n_eq x 1 array with number of explanatory variables
by equation

	bigylagdictionary
	spatially lagged dependent variable

	bigXlagdictionary
	spatially lagged explanatory variable

	lamolsarray
	spatial autoregressive coefficients from equation by
equation ML-Error estimation

	clikerrfloat
	concentrated log-likelihood from equation by equation
ML-Error estimation (no constant)

	bSUR0array
	SUR estimation for betas without spatial autocorrelation

	llikfloat
	log-likelihood for classic SUR estimation (includes constant)

	lamsurfloat
	spatial autoregressive coefficient in ML SUR Error

	bSURarray
	beta coefficients in ML SUR Error

	varbarray
	variance of beta coefficients in ML SUR Error

	sigarray
	error variance-covariance matrix in ML SUR Error

	bigEarray
	n by n_eq matrix of vectors of residuals for each equation

	cliksurerrfloat
	concentrated log-likelihood from ML SUR Error (no constant)

	sur_infarray
	inference for regression coefficients, stand. error, t, p

	errllikfloat
	log-likelihood for error model without SUR (with constant)

	surerrllikfloat
	log-likelihood for SUR error model (with constant)

	lrtesttuple
	likelihood ratio test for off-diagonal Sigma elements

	likrlambdatuple
	likelihood ratio test on spatial autoregressive coefficients

	vmarray
	asymptotic variance matrix for lambda and Sigma (only for vm=True)

	lamsetparray
	inference for lambda, stand. error, t, p (only for vm=True)

	lamtesttuple
	with test for constancy of lambda across equations
(test value, degrees of freedom, p-value)

	joinlamtuple
	with test for joint significance of lambda across
equations (test value, degrees of freedom, p-value)

	surchowlist
	with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_dsstring
	name for the data set

	name_wstring
	name for the weights file

	name_regimesstring
	name of regime variable for use in the output

	
__init__(self, bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, epsilon=1e-07, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX, w[, regimes, …])

	Initialize self.

 spreg.SURlagIV

spreg.SURlagIV

	
class spreg.SURlagIV(bigy, bigX, bigyend=None, bigq=None, w=None, regimes=None, vm=False, regime_lag_sep=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None, name_regimes=None)

	User class for spatial lag estimation using IV

	Parameters

	
	bigydictionary
	with vector for dependent variable by equation

	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)

	bigyenddictionary
	with matrix of endogenous variables by equation
(optional)

	bigqdictionary
	with matrix of instruments by equation
(optional)

	wspatial weights object, required
	

	vmboolean
	listing of full variance-covariance matrix, default = False

	w_lagsinteger
	order of spatial lags for WX instruments, default = 1

	lag_qboolean
	flag to apply spatial lag to other instruments,
default = True

	nonspat_diagboolean
	flag for non-spatial diagnostics, default = True

	spat_diagboolean
	flag for spatial diagnostics, default = False

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used.

	name_bigXdictionary
	with names of explanatory variables for each
equation.
default = None, but should be specified.
is done when sur_stackxy is used.

	name_bigyenddictionary
	with names of endogenous variables for each
equation.
default = None, but should be specified.
is done when sur_stackZ is used.

	name_bigqdictionary
	with names of instrumental variables for each
equations.
default = None, but should be specified.
is done when sur_stackZ is used.

	name_dsstring
	name for the data set

	name_wstring
	name for the spatial weights

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Although not required,
in this example we will specify additional endogenous regressors.
Equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)

To run a spatial lag model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURlagIV(bigy,bigX,bigyend,bigq,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT",name_w="nat_queen")
>>> reg.b3SLS
{0: array([[6.95472387],
 [1.44044301],
 [-0.00771893],
 [3.65051153],
 [0.00362663]]), 1: array([[5.61101925],
 [1.38716801],
 [-0.15512029],
 [3.1884457],
 [0.25832185]])}

>>> reg.tsls_inf
{0: array([[0.49128435, 14.15620899, 0.],
 [0.11516292, 12.50787151, 0.],
 [0.03204088, -0.2409087 , 0.80962588],
 [0.1876025 , 19.45875745, 0.],
 [0.05450628, 0.06653605, 0.94695106]]), 1: array([[0.44969956, 12.47726211, 0.],
 [0.10440241, 13.28674277, 0.],
 [0.04150243, -3.73761961, 0.00018577],
 [0.19133145, 16.66451427, 0.],
 [0.04394024, 5.87893596, 0.]])}

	Attributes

	
	wspatial weights object
	

	bigydictionary
	with y values

	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation

	bigyenddictionary
	with matrix of endogenous variables for each
equation; contains Wy only if no other endogenous specified

	bigqdictionary
	with matrix of instrumental variables for each
equation; contains WX only if no other endogenous specified

	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s

	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s

	n_eqint
	number of equations

	nint
	number of observations in each cross-section

	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation

	b2SLSdictionary
	with 2SLS regression coefficients for each equation

	tslsEarray
	N x n_eq array with OLS residuals for each equation

	b3SLSdictionary
	with 3SLS regression coefficients for each equation

	varbarray
	variance-covariance matrix

	sigarray
	Sigma matrix of inter-equation error covariances

	residsarray
	n by n_eq array of residuals

	corrarray
	inter-equation 3SLS error correlation matrix

	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation

	joinrhotuple
	test on joint significance of spatial autoregressive coefficient.
tuple with test statistic, degrees of freedom, p-value

	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value

	name_wstring
	name for the spatial weights

	name_dsstring
	name for the data set

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_bigyenddictionary
	with names of endogenous variables for each
equation

	name_bigqdictionary
	with names of instrumental variables for each
equations

	
__init__(self, bigy, bigX, bigyend=None, bigq=None, w=None, regimes=None, vm=False, regime_lag_sep=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX[, bigyend, bigq, …])

	Initialize self.

 spreg.ThreeSLS

spreg.ThreeSLS

	
class spreg.ThreeSLS(bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	User class for 3SLS estimation

	Parameters

	
	bigydictionary
	with vector for dependent variable by equation

	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)

	bigyenddictionary
	with matrix of endogenous variables by equation

	bigqdictionary
	with matrix of instruments by equation

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.

	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True.

	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used

	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified.
is done when sur_stackxy is used

	name_bigyenddictionary
	with names of endogenous variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used

	name_bigqdictionary
	with names of instrumental variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used.

	name_dsstring
	name for the data set.

	name_regimesstring
	name of regime variable for use in the output.

Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal

Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')

The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]

The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)

We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = ThreeSLS(bigy,bigX,bigyend,bigq,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT")
>>> reg.b3SLS
{0: array([[6.92426353],
 [1.42921826],
 [0.00049435],
 [3.5829275]]), 1: array([[7.62385875],
 [1.65031181],
 [-0.21682974],
 [3.91250428]])}

>>> reg.tsls_inf
{0: array([[0.23220853, 29.81916157, 0.],
 [0.10373417, 13.77770036, 0.],
 [0.03086193, 0.01601807, 0.98721998],
 [0.11131999, 32.18584124, 0.]]), 1: array([[0.28739415, 26.52753638, 0.],
 [0.09597031, 17.19606554, 0.],
 [0.04089547, -5.30204786, 0.00000011],
 [0.13586789, 28.79638723, 0.]])}

	Attributes

	
	bigydictionary
	with y values

	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation

	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s

	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s

	n_eqint
	number of equations

	nint
	number of observations in each cross-section

	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation

	b2SLSdictionary
	with 2SLS regression coefficients for each equation

	tslsEarray
	N x n_eq array with OLS residuals for each equation

	b3SLSdictionary
	with 3SLS regression coefficients for each equation

	varbarray
	variance-covariance matrix

	sigarray
	Sigma matrix of inter-equation error covariances

	bigEarray
	n by n_eq array of residuals

	corrarray
	inter-equation 3SLS error correlation matrix

	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation

	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value

	name_dsstring
	name for the data set

	name_bigydictionary
	with name of dependent variable for each equation

	name_bigXdictionary
	with names of explanatory variables for each
equation

	name_bigyenddictionary
	with names of endogenous variables for each
equation

	name_bigqdictionary
	with names of instrumental variables for each
equations

	name_regimesstring
	name of regime variable for use in the output

	
__init__(self, bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, bigy, bigX, bigyend, bigq[, …])

	Initialize self.

 spreg.diagnostics.f_stat

spreg.diagnostics.f_stat

	
spreg.diagnostics.f_stat(reg)

	Calculates the f-statistic and associated p-value of the
regression. [Gre03].
(For two stage least squares see f_stat_tsls)

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	fs_resulttuple
	includes value of F statistic and associated p-value

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the F-statistic for the regression.

>>> testresult = diagnostics.f_stat(reg)

Print the results tuple, including the statistic and its significance.

>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1])
('28.385629224695', '0.000000009341')

 spreg.diagnostics.t_stat

spreg.diagnostics.t_stat

	
spreg.diagnostics.t_stat(reg, z_stat=False)

	Calculates the t-statistics (or z-statistics) and associated
p-values. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	z_statboolean
	If True run z-stat instead of t-stat

	Returns

	
	ts_resultlist of tuples
	each tuple includes value of t statistic (or z
statistic) and associated p-value

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.open(libpysal.examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate t-statistics for the regression coefficients.

>>> testresult = diagnostics.t_stat(reg)

Print the tuples that contain the t-statistics and their significances.

>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.12f"%testresult[2][1])
('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.654408642718', '0.010874504910')

 spreg.diagnostics.r2

spreg.diagnostics.r2

	
spreg.diagnostics.r2(reg)

	Calculates the R^2 value for the regression. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	r2_resultfloat
	value of the coefficient of determination for the
regression

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the R^2 value for the regression.

>>> testresult = diagnostics.r2(reg)

Print the result.

>>> print("%1.8f"%testresult)
0.55240404

 spreg.diagnostics.ar2

spreg.diagnostics.ar2

	
spreg.diagnostics.ar2(reg)

	Calculates the adjusted R^2 value for the regression. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	ar2_resultfloat
	value of R^2 adjusted for the number of explanatory
variables.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the adjusted R^2 value for the regression.
>>> testresult = diagnostics.ar2(reg)

Print the result.

>>> print("%1.8f"%testresult)
0.53294335

 spreg.diagnostics.se_betas

spreg.diagnostics.se_betas

	
spreg.diagnostics.se_betas(reg)

	Calculates the standard error of the regression coefficients. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	se_resultarray
	includes standard errors of each coefficient (1 x k)

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the standard errors of the regression coefficients.

>>> testresult = diagnostics.se_betas(reg)

Print the vector of standard errors.

>>> testresult
array([4.73548613, 0.33413076, 0.10319868])

 spreg.diagnostics.log_likelihood

spreg.diagnostics.log_likelihood

	
spreg.diagnostics.log_likelihood(reg)

	Calculates the log-likelihood value for the regression. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	ll_resultfloat
	value for the log-likelihood of the regression.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the log-likelihood for the regression.

>>> testresult = diagnostics.log_likelihood(reg)

Print the result.

>>> testresult
-187.3772388121491

 spreg.diagnostics.akaike

spreg.diagnostics.akaike

	
spreg.diagnostics.akaike(reg)

	Calculates the Akaike Information Criterion. [Aka74]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	aic_resultscalar
	value for Akaike Information Criterion of the
regression.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Akaike Information Criterion (AIC).

>>> testresult = diagnostics.akaike(reg)

Print the result.

>>> testresult
380.7544776242982

 spreg.diagnostics.schwarz

spreg.diagnostics.schwarz

	
spreg.diagnostics.schwarz(reg)

	Calculates the Schwarz Information Criterion. [S+78]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	bic_resultscalar
	value for Schwarz (Bayesian) Information Criterion of
the regression.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Schwarz Information Criterion.

>>> testresult = diagnostics.schwarz(reg)

Print the results.

>>> testresult
386.42993851863008

 spreg.diagnostics.condition_index

spreg.diagnostics.condition_index

	
spreg.diagnostics.condition_index(reg)

	Calculates the multicollinearity condition index according to Belsey,
Kuh and Welsh (1980) [BKW05].

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	ci_resultfloat
	scalar value for the multicollinearity condition
index.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the condition index to check for multicollinearity.

>>> testresult = diagnostics.condition_index(reg)

Print the result.

>>> print("%1.3f"%testresult)
6.542

 spreg.diagnostics.jarque_bera

spreg.diagnostics.jarque_bera

	
spreg.diagnostics.jarque_bera(reg)

	Jarque-Bera test for normality in the residuals. [JB80]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	jb_resultdictionary
	contains the statistic (jb) for the Jarque-Bera test
and the associated p-value (p-value)

	dfinteger
	degrees of freedom for the test (always 2)

	jbfloat
	value of the test statistic

	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with 2 df)

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Jarque-Bera test for normality of residuals.

>>> testresult = diagnostics.jarque_bera(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['jb'])
1.836

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.3994

 spreg.diagnostics.breusch_pagan

spreg.diagnostics.breusch_pagan

	
spreg.diagnostics.breusch_pagan(reg, z=None)

	Calculates the Breusch-Pagan test statistic to check for
heteroscedasticity. [BP79]

	Parameters

	
	regregression object
	output instance from a regression model

	zarray
	optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.

	Returns

	
	bp_resultdictionary
	contains the statistic (bp) for the test and the
associated p-value (p-value)

	bpfloat
	scalar value for the Breusch-Pagan test statistic

	dfinteger
	degrees of freedom associated with the test (k)

	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Breusch-Pagan test for heteroscedasticity.

>>> testresult = diagnostics.breusch_pagan(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['bp'])
7.900

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0193

 spreg.diagnostics.white

spreg.diagnostics.white

	
spreg.diagnostics.white(reg)

	Calculates the White test to check for heteroscedasticity. [Whi80]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	white_resultdictionary
	contains the statistic (white), degrees of freedom
(df) and the associated p-value (pvalue) for the
White test.

	whitefloat
	scalar value for the White test statistic.

	dfinteger
	degrees of freedom associated with the test

	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with k df)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the White test for heteroscedasticity.

>>> testresult = diagnostics.white(reg)

Print the degrees of freedom for the test.

>>> print testresult['df']
5

Print the test statistic.

>>> print("%1.3f"%testresult['wh'])
19.946

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0013

 spreg.diagnostics.koenker_bassett

spreg.diagnostics.koenker_bassett

	
spreg.diagnostics.koenker_bassett(reg, z=None)

	Calculates the Koenker-Bassett test statistic to check for
heteroscedasticity. [KBJ82][Gre03]

	Parameters

	
	regregression output
	output from an instance of a regression class

	zarray
	optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.

	Returns

	
	kb_resultdictionary
	contains the statistic (kb), degrees of freedom (df)
and the associated p-value (pvalue) for the test.

	kbfloat
	scalar value for the Koenker-Bassett test statistic.

	dfinteger
	degrees of freedom associated with the test

	pvaluefloat
	p-value associated with the statistic (chi^2
distributed)

Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the Koenker-Bassett test for heteroscedasticity.

>>> testresult = diagnostics.koenker_bassett(reg)

Print the degrees of freedom for the test.

>>> testresult['df']
2

Print the test statistic.

>>> print("%1.3f"%testresult['kb'])
5.694

Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0580

 spreg.diagnostics.vif

spreg.diagnostics.vif

	
spreg.diagnostics.vif(reg)

	Calculates the variance inflation factor for each independent variable.
For the ease of indexing the results, the constant is currently
included. This should be omitted when reporting the results to the
output text. [Gre03]

	Parameters

	
	regregression object
	output instance from a regression model

	Returns

	
	vif_resultlist of tuples
	each tuple includes the vif and the tolerance, the
order of the variables corresponds to their order in
the reg.x matrix

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS

Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")

Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T

Run an OLS regression.

>>> reg = OLS(y,X)

Calculate the variance inflation factor (VIF).
>>> testresult = diagnostics.vif(reg)

Select the tuple for the income variable.

>>> incvif = testresult[1]

Print the VIF for income.

>>> print("%12.12f"%incvif[0])
1.333117497189

Print the tolerance for income.

>>> print("%12.12f"%incvif[1])
0.750121427487

Repeat for the home value variable.

>>> hovalvif = testresult[2]
>>> print("%12.12f"%hovalvif[0])
1.333117497189
>>> print("%12.12f"%hovalvif[1])
0.750121427487

 spreg.diagnostics.likratiotest

spreg.diagnostics.likratiotest

	
spreg.diagnostics.likratiotest(reg0, reg1)

	Likelihood ratio test statistic [Gre03]

	Parameters

	
	reg0regression object
	for constrained model (H0)

	reg1regression object
	for unconstrained model (H1)

	Returns

	
	likratiodictionary
	contains the statistic (likr), the degrees of
freedom (df) and the p-value (pvalue)

	likrfloat
	likelihood ratio statistic

	dfinteger
	degrees of freedom

	p-valuefloat
	p-value

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import scipy.stats as stats
>>> import spreg.ml_lag as lag

Use the baltim sample data set

>>> db = libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w.transform = 'r'

OLS regression

>>> ols1 = ps.spreg.OLS(y,x)

ML Lag regression

>>> mllag1 = lag.ML_Lag(y,x,w)

>>> lr = likratiotest(ols1,mllag1)

>>> print "Likelihood Ratio Test: {0:.4f} df: {1} p-value: {2:.4f}".format(lr["likr"],lr["df"],lr["p-value"])
Likelihood Ratio Test: 44.5721 df: 1 p-value: 0.0000

 spreg.diagnostics_sp.LMtests

spreg.diagnostics_sp.LMtests

	
class spreg.diagnostics_sp.LMtests(ols, w, tests=['all'])

	Lagrange Multiplier tests. Implemented as presented in [ABFY96]

	Parameters

	
	lmetuple
	(Only if ‘lme’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM error test.

	lmltuple
	(Only if ‘lml’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM lag test.

	rlmetuple
	(Only if ‘rlme’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM error test.

	rlmltuple
	(Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM lag test.

	sarmatuple
	(Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the SARMA test.

Examples

>>> import numpy as np
>>> import libpysal
>>> from ols import OLS

Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T

Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run all the LM tests in the residuals. These diagnostics test for the
presence of remaining spatial autocorrelation in the residuals of an OLS
model and give indication about the type of spatial model. There are five
types: presence of a spatial lag model (simple and robust version),
presence of a spatial error model (simple and robust version) and joint presence
of both a spatial lag as well as a spatial error model.

>>> lms = spreg.diagnostics_sp.LMtests(ols, w)

LM error test:

>>> print round(lms.lme[0],4), round(lms.lme[1],4)
3.0971 0.0784

LM lag test:

>>> print round(lms.lml[0],4), round(lms.lml[1],4)
0.9816 0.3218

Robust LM error test:

>>> print round(lms.rlme[0],4), round(lms.rlme[1],4)
3.2092 0.0732

Robust LM lag test:

>>> print round(lms.rlml[0],4), round(lms.rlml[1],4)
1.0936 0.2957

LM SARMA test:

>>> print round(lms.sarma[0],4), round(lms.sarma[1],4)
4.1907 0.123

	Attributes

	
	olsOLS
	OLS regression object

	wW
	Spatial weights instance

	testslist
	Lists of strings with the tests desired to be performed.
Values may be:

	‘all’: runs all the options (default)

	‘lme’: LM error test

	‘rlme’: Robust LM error test

	‘lml’ : LM lag test

	‘rlml’: Robust LM lag test

	
__init__(self, ols, w, tests=['all'])

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, ols, w[, tests])

	Initialize self.

 spreg.diagnostics_sp.MoranRes

spreg.diagnostics_sp.MoranRes

	
class spreg.diagnostics_sp.MoranRes(ols, w, z=False)

	Moran’s I for spatial autocorrelation in residuals from OLS regression

	Parameters

	
	olsOLS
	OLS regression object

	wW
	Spatial weights instance

	zboolean
	If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False.

Examples

>>> import numpy as np
>>> import libpysal
>>> from ols import OLS

Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')

Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T

Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()

Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'

Run an OLS regression

>>> ols = OLS(y, x)

Run Moran’s I test for residual spatial autocorrelation in an OLS model.
This computes the traditional statistic applying a correction in the
expectation and variance to account for the fact it comes from residuals
instead of an independent variable

>>> m = spreg.diagnostics_sp.MoranRes(ols, w, z=True)

Value of the Moran’s I statistic:

>>> print round(m.I,4)
0.1713

Value of the Moran’s I expectation:

>>> print round(m.eI,4)
-0.0345

Value of the Moran’s I variance:

>>> print round(m.vI,4)
0.0081

Value of the Moran’s I standardized value. This is
distributed as a standard Normal(0, 1)

>>> print round(m.zI,4)
2.2827

P-value of the standardized Moran’s I value (z):

>>> print round(m.p_norm,4)
0.0224

	Attributes

	
	Ifloat
	Moran’s I statistic

	eIfloat
	Moran’s I expectation

	vIfloat
	Moran’s I variance

	zIfloat
	Moran’s I standardized value

	
__init__(self, ols, w, z=False)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, ols, w[, z])

	Initialize self.

 spreg.diagnostics_sp.AKtest

spreg.diagnostics_sp.AKtest

	
class spreg.diagnostics_sp.AKtest(iv, w, case='nosp')

	Moran’s I test of spatial autocorrelation for IV estimation.
Implemented following the original reference [AK97]

	Parameters

	
	ivTSLS
	Regression object from TSLS class

	wW
	Spatial weights instance

	casestring
	Flag for special cases (default to ‘nosp’):

	‘nosp’: Only NO spatial end. reg.

	‘gen’: General case (spatial lag + end. reg.)

Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The TSLS is required to run the model on
which we will perform the tests.

>>> import numpy as np
>>> import libpysal
>>> from twosls import TSLS
>>> from twosls_sp import GM_Lag

Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile. Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')

Before being able to apply the diagnostics, we have to run a model and,
for that, we need the input variables. Extract the CRIME column (crime
rates) from the DBF file and make it the dependent variable for the
regression. Note that PySAL requires this to be an numpy array of shape
(n, 1) as opposed to the also common shape of (n,) that other packages
accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))

Extract INC (income) vector from the DBF to be used as
independent variables in the regression. Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T

In this case, we consider HOVAL (home value) as an endogenous regressor,
so we acknowledge that by reading it in a different category.

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T

In order to properly account for the endogeneity, we have to pass in the
instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T

Now we are good to run the model. It is an easy one line task.

>>> reg = TSLS(y, X, yd, q=q)

Now we are concerned with whether our non-spatial model presents spatial
autocorrelation in the residuals. To assess this possibility, we can run
the Anselin-Kelejian test, which is a version of the classical LM error
test adapted for the case of residuals from an instrumental variables (IV)
regression. First we need an extra object, the weights matrix, which
includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))

Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'

We are good to run the test. It is a very simple task:

>>> ak = AKtest(reg, w)

And explore the information obtained:

>>> print('AK test: %f P-value: %f'%(ak.ak, ak.p))
AK test: 4.642895 P-value: 0.031182

The test also accomodates the case when the residuals come from an IV
regression that includes a spatial lag of the dependent variable. The only
requirement needed is to modify the case parameter when we call
AKtest. First, let us run a spatial lag model:

>>> reg_lag = GM_Lag(y, X, yd, q=q, w=w)

And now we can run the AK test and obtain similar information as in the
non-spatial model.

>>> ak_sp = AKtest(reg, w, case='gen')
>>> print('AK test: %f P-value: %f'%(ak_sp.ak, ak_sp.p))
AK test: 1.157593 P-value: 0.281965

	Attributes

	
	mifloat
	Moran’s I statistic for IV residuals

	akfloat
	Square of corrected Moran’s I for residuals
\(ak = \dfrac{N imes I^*}{\phi^2}\).
Note: if case=’nosp’ then it simplifies to the LMerror

	pfloat
	P-value of the test

	
__init__(self, iv, w, case='nosp')

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(self, iv, w[, case])

	Initialize self.

 spreg.diagnostics_sur.sur_setp

spreg.diagnostics_sur.sur_setp

	
spreg.diagnostics_sur.sur_setp(bigB, varb)

	Utility to compute standard error, t and p-value

	Parameters

	
	bigBdictionary
	of regression coefficient estimates,
one vector by equation

	varbarray
	variance-covariance matrix of coefficients

	Returns

	
	surinfdictdictionary
	with standard error, t-value, and
p-value array, one for each equation

 spreg.diagnostics_sur.sur_lrtest

spreg.diagnostics_sur.sur_lrtest

	
spreg.diagnostics_sur.sur_lrtest(n, n_eq, ldetS0, ldetS1)

	Likelihood Ratio test on off-diagonal elements of Sigma

	Parameters

	
	nint
	cross-sectional dimension (number of observations for an equation)

	n_eqint
	number of equations

	ldetS0float
	log determinant of Sigma for OLS case

	ldetS1float
	log determinant of Sigma for SUR case (should be iterated)

	Returns

	
	(lrtest,M,pvalue)tuple
	with value of test statistic (lrtest),
degrees of freedom (M, as an integer)
p-value

 spreg.diagnostics_sur.sur_lmtest

spreg.diagnostics_sur.sur_lmtest

	
spreg.diagnostics_sur.sur_lmtest(n, n_eq, sig)

	Lagrange Multiplier test on off-diagonal elements of Sigma

	Parameters

	
	nint
	cross-sectional dimension (number of observations for an equation)

	n_eqint
	number of equations

	sigarray
	inter-equation covariance matrix for null model (OLS)

	Returns

	
	(lmtest,M,pvalue)tuple
	with value of test statistic (lmtest),
degrees of freedom (M, as an integer)
p-value

 spreg.diagnostics_sur.lam_setp

spreg.diagnostics_sur.lam_setp

	
spreg.diagnostics_sur.lam_setp(lam, vm)

	Standard errors, t-test and p-value for lambda in SUR Error ML

	Parameters

	
	lamarray
	n_eq x 1 array with ML estimates for spatial error
autoregressive coefficient

	vmarray
	n_eq x n_eq subset of variance-covariance matrix for
lambda and Sigma in SUR Error ML
(needs to be subset from full vm)

	Returns

	
	: tuple
	with arrays for standard error, t-value and p-value
(each element in the tuple is an n_eq x 1 array)

 spreg.diagnostics_sur.surLMe

spreg.diagnostics_sur.surLMe

	
spreg.diagnostics_sur.surLMe(n_eq, WS, bigE, sig)

	Lagrange Multiplier test on error spatial autocorrelation in SUR

	Parameters

	
	n_eqint
	number of equations

	WSarray
	spatial weights matrix in sparse form

	bigEarray
	n x n_eq matrix of residuals by equation

	sigarray
	cross-equation error covariance matrix

	Returns

	
	(LMe,n_eq,pvalue)tuple
	with value of statistic (LMe), degrees
of freedom (n_eq) and p-value

 spreg.diagnostics_sur.surLMlag

spreg.diagnostics_sur.surLMlag

	
spreg.diagnostics_sur.surLMlag(n_eq, WS, bigy, bigX, bigE, bigYP, sig, varb)

	Lagrange Multiplier test on lag spatial autocorrelation in SUR

	Parameters

	
	n_eqint
	number of equations

	WSspatial weights matrix in sparse form
	

	bigydictionary
	with y values

	bigXdictionary
	with X values

	bigEarray
	n x n_eq matrix of residuals by equation

	bigYParray
	n x n_eq matrix of predicted values by equation

	sigarray
	cross-equation error covariance matrix

	varbarray
	variance-covariance matrix for b coefficients (inverse of Ibb)

	Returns

	
	(LMlag,n_eq,pvalue)tuple
	with value of statistic (LMlag), degrees
of freedom (n_eq) and p-value

 References

References

	Aka74

	Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on automatic control, 19(6):716–723, 1974.

	Ans88

	Luc Anselin. Spatial Econometrics: Methods and Models. Kluwer, Dordrecht, 1988.

	Ans11

	Luc Anselin. GMM estimation of spatial error autocorrelation with and without heteroskedasticity. Technical Report, GeoDa Center for Geospatial Analysis and Computation, 2011.

	ABFY96

	Luc Anselin, Anil K Bera, Raymond Florax, and Mann J Yoon. Simple diagnostic tests for spatial dependence. Regional science and urban economics, 26(1):77–104, 1996.

	AK97

	Luc Anselin and Harry H Kelejian. Testing for spatial error autocorrelation in the presence of endogenous regressors. International Regional Science Review, 20(1-2):153–182, 1997.

	ADKP10

	Irani Arraiz, David M. Drukker, Harry H. Kelejian, and Ingmar R. Prucha. A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science, 50(2):592–614, 2010. doi:10.1111/j.1467-9787.2009.00618.x [https://doi.org/10.1111/j.1467-9787.2009.00618.x].

	BKW05

	David A Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics: Identifying influential data and sources of collinearity. Volume 571. John Wiley & Sons, 2005.

	BP79

	Trevor S Breusch and Adrian R Pagan. A simple test for heteroscedasticity and random coefficient variation. Econometrica: Journal of the Econometric Society, pages 1287–1294, 1979.

	DEP13

	David M Drukker, Peter Egger, and Ingmar R Prucha. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews, 32(5-6):686–733, 2013.

	DPR13

	David M. Drukker, Ingmar R. Prucha, and Rafal Raciborski. A command for estimating spatial-autoregressive models with spatial-autoregressive disturbances and additional endogenous variables. The Stata Journal, 13(2):287–301, 2013. URL: https://journals.sagepub.com/doi/abs/10.1177/1536867X1301300203.

	Gre03

	William H Greene. Econometric analysis. Pearson Education India, 2003.

	JB80

	Carlos M Jarque and Anil K Bera. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics letters, 6(3):255–259, 1980.

	KP99

	H H Kelejian and I R Prucha. A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev., 40:509–534, 1999.

	KP98

	Harry H Kelejian and Ingmar R Prucha. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Fin. Econ., 17(1):99–121, 1998.

	KBJ82

	Roger Koenker and Gilbert Bassett Jr. Robust tests for heteroscedasticity based on regression quantiles. Econometrica: Journal of the Econometric Society, pages 43–61, 1982.

	S+78

	Gideon Schwarz and others. Estimating the dimension of a model. The annals of statistics, 6(2):461–464, 1978.

	Whi80

	Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, pages 817–838, 1980.

 Index

Index

 _
 | A
 | B
 | C
 | F
 | G
 | J
 | K
 | L
 | M
 | O
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (spreg.diagnostics_sp.AKtest method)

 	(spreg.diagnostics_sp.LMtests method)

 	(spreg.diagnostics_sp.MoranRes method)

 	(spreg.GM_Combo method)

 	(spreg.GM_Combo_Het method)

 	(spreg.GM_Combo_Het_Regimes method)

 	(spreg.GM_Combo_Hom method)

 	(spreg.GM_Combo_Hom_Regimes method)

 	(spreg.GM_Combo_Regimes method)

 	(spreg.GM_Endog_Error method)

 	(spreg.GM_Endog_Error_Het method)

 	(spreg.GM_Endog_Error_Het_Regimes method)

 	(spreg.GM_Endog_Error_Hom method)

 	(spreg.GM_Endog_Error_Hom_Regimes method)

 	(spreg.GM_Endog_Error_Regimes method)

 	(spreg.GM_Error method)

 	(spreg.GM_Error_Het method)

 	(spreg.GM_Error_Het_Regimes method)

 	(spreg.GM_Error_Hom method)

 	(spreg.GM_Error_Hom_Regimes method)

 	(spreg.GM_Error_Regimes method)

 	(spreg.GM_Lag method)

 	(spreg.GM_Lag_Regimes method)

 	(spreg.ML_Error method)

 	(spreg.ML_Error_Regimes method)

 	(spreg.ML_Lag method)

 	(spreg.ML_Lag_Regimes method)

 	(spreg.OLS method)

 	(spreg.OLS_Regimes method)

 	(spreg.SUR method)

 	(spreg.SURerrorGM method)

 	(spreg.SURerrorML method)

 	(spreg.SURlagIV method)

 	(spreg.ThreeSLS method)

 	(spreg.TSLS method)

A

 	
 	akaike() (in module spreg.diagnostics)

 	
 	AKtest (class in spreg.diagnostics_sp)

 	ar2() (in module spreg.diagnostics)

B

 	
 	breusch_pagan() (in module spreg.diagnostics)

C

 	
 	condition_index() (in module spreg.diagnostics)

F

 	
 	f_stat() (in module spreg.diagnostics)

G

 	
 	GM_Combo (class in spreg)

 	GM_Combo_Het (class in spreg)

 	GM_Combo_Het_Regimes (class in spreg)

 	GM_Combo_Hom (class in spreg)

 	GM_Combo_Hom_Regimes (class in spreg)

 	GM_Combo_Regimes (class in spreg)

 	GM_Endog_Error (class in spreg)

 	GM_Endog_Error_Het (class in spreg)

 	GM_Endog_Error_Het_Regimes (class in spreg)

 	GM_Endog_Error_Hom (class in spreg)

 	
 	GM_Endog_Error_Hom_Regimes (class in spreg)

 	GM_Endog_Error_Regimes (class in spreg)

 	GM_Error (class in spreg)

 	GM_Error_Het (class in spreg)

 	GM_Error_Het_Regimes (class in spreg)

 	GM_Error_Hom (class in spreg)

 	GM_Error_Hom_Regimes (class in spreg)

 	GM_Error_Regimes (class in spreg)

 	GM_Lag (class in spreg)

 	GM_Lag_Regimes (class in spreg)

J

 	
 	jarque_bera() (in module spreg.diagnostics)

K

 	
 	koenker_bassett() (in module spreg.diagnostics)

L

 	
 	lam_setp() (in module spreg.diagnostics_sur)

 	likratiotest() (in module spreg.diagnostics)

 	
 	LMtests (class in spreg.diagnostics_sp)

 	log_likelihood() (in module spreg.diagnostics)

M

 	
 	ML_Error (class in spreg)

 	ML_Error_Regimes (class in spreg)

 	
 	ML_Lag (class in spreg)

 	ML_Lag_Regimes (class in spreg)

 	MoranRes (class in spreg.diagnostics_sp)

O

 	
 	OLS (class in spreg)

 	
 	OLS_Regimes (class in spreg)

R

 	
 	r2() (in module spreg.diagnostics)

S

 	
 	schwarz() (in module spreg.diagnostics)

 	se_betas() (in module spreg.diagnostics)

 	SUR (class in spreg)

 	sur_lmtest() (in module spreg.diagnostics_sur)

 	sur_lrtest() (in module spreg.diagnostics_sur)

 	
 	sur_setp() (in module spreg.diagnostics_sur)

 	