

    
      
          
            
  
Spatial Regression Models (spreg)

spreg, short for “spatial regression,” is a python package to estimate simultaneous autoregressive spatial regression models. These models are useful when modeling processes where observations interact with one another. For more information on these models, consult the Spatial Regression short course by Luc Anselin (Spring, 2017), with the Center for Spatial Data Science at the University of Chicago:
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Installation

spreg is installable using the Python Package Manager, pip. To install:

pip install spreg





Further, all of the stable functionality is also available in PySAL, the
Python Spatial Analysis Library. PySAL can be installed using pip or conda:

pip install pysal #or
conda install pysal
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API reference




Spatial Regression Models

These are the standard spatial regression models supported by the spreg package. Each of them contains a significant amount of detail in their docstring discussing how they’re used, how they’re fit, and how to interpret the results.







	spreg.OLS(y, x[, w, robust, gwk, sig2n_k, …])

	Ordinary least squares with results and diagnostics.



	spreg.ML_Lag(y, x, w[, method, epsilon, …])

	ML estimation of the spatial lag model with all results and diagnostics; [Ans88]



	spreg.ML_Error(y, x, w[, method, epsilon, …])

	ML estimation of the spatial error model with all results and diagnostics; [Ans88]



	spreg.GM_Lag(y, x[, yend, q, w, w_lags, …])

	Spatial two stage least squares (S2SLS) with results and diagnostics;  Anselin (1988) [Ans88]



	spreg.GM_Error(y, x, w[, vm, name_y, …])

	GMM method for a spatial error model, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Error_Het(y, x, w[, max_iter, …])

	GMM method for a spatial error model with heteroskedasticity, with results and diagnostics; based on [ADKP10], following [Ans11].



	spreg.GM_Error_Hom(y, x, w[, max_iter, …])

	GMM method for a spatial error model with homoskedasticity, with results and diagnostics; based on Drukker et al.



	spreg.GM_Combo(y, x[, yend, q, w, w_lags, …])

	GMM method for a spatial lag and error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Combo_Het(y, x[, yend, q, w, …])

	GMM method for a spatial lag and error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].



	spreg.GM_Combo_Hom(y, x[, yend, q, w, …])

	GMM method for a spatial lag and error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al.



	spreg.GM_Endog_Error(y, x, yend, q, w[, vm, …])

	GMM method for a spatial error model with endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Endog_Error_Het(y, x, yend, q, w[, …])

	GMM method for a spatial error model with heteroskedasticity and endogenous variables, with results and diagnostics; based on [ADKP10], following [Ans11].



	spreg.GM_Endog_Error_Hom(y, x, yend, q, w[, …])

	GMM method for a spatial error model with homoskedasticity and endogenous variables, with results and diagnostics; based on Drukker et al.



	spreg.TSLS(y, x, yend, q[, w, robust, gwk, …])

	Two stage least squares with results and diagnostics.



	spreg.ThreeSLS(bigy, bigX, bigyend, bigq[, …])

	User class for 3SLS estimation







Regimes Models

Regimes models are variants of spatial regression models which allow for structural instability in parameters. That means that these models allow different coefficient values in distinct subsets of the data.







	spreg.OLS_Regimes(y, x, regimes[, w, …])

	Ordinary least squares with results and diagnostics.



	spreg.ML_Lag_Regimes(y, x, regimes[, w, …])

	ML estimation of the spatial lag model with regimes (note no consistency  checks, diagnostics or constants added) [Ans88].



	spreg.ML_Error_Regimes(y, x, regimes[, w, …])

	ML estimation of the spatial error model with regimes (note no consistency  checks, diagnostics or constants added); Anselin (1988) [Anselin1988]



	spreg.GM_Lag_Regimes(y, x, regimes[, yend, …])

	Spatial two stage least squares (S2SLS) with regimes;  [Ans88]



	spreg.GM_Error_Regimes(y, x, regimes, w[, …])

	GMM method for a spatial error model with regimes, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Error_Het_Regimes(y, x, regimes, w)

	GMM method for a spatial error model with heteroskedasticity and regimes; based on Arraiz et al [ADKP10], following Anselin [Ans11].



	spreg.GM_Error_Hom_Regimes(y, x, regimes, w)

	GMM method for a spatial error model with homoskedasticity, with regimes,  results and diagnostics; based on Drukker et al.



	spreg.GM_Combo_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Combo_Hom_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with homoskedasticity, regimes and endogenous variables, with results and diagnostics; based on Drukker et al.



	spreg.GM_Combo_Het_Regimes(y, x, regimes[, …])

	GMM method for a spatial lag and error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].



	spreg.GM_Endog_Error_Regimes(y, x, yend, q, …)

	GMM method for a spatial error model with regimes and endogenous variables, with results and diagnostics; based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].



	spreg.GM_Endog_Error_Hom_Regimes(y, x, yend, …)

	GMM method for a spatial error model with homoskedasticity, regimes and endogenous variables.



	spreg.GM_Endog_Error_Het_Regimes(y, x, yend, …)

	GMM method for a spatial error model with heteroskedasticity, regimes and endogenous variables, with results and diagnostics; based on Arraiz et al [ADKP10], following Anselin [Ans11].









Seemingly-Unrelated Regressions

Seeimingly-unrelated regression models are a generalization of linear regression. These models (and their spatial generalizations) allow for correlation in the residual terms between groups that use the same model. In spatial Seeimingly-Unrelated Regressions, the error terms across groups are allowed to exhibit a structured type of correlation: spatail correlation.







	spreg.SUR(bigy, bigX[, w, regimes, …])

	User class for SUR estimation, both two step as well as iterated



	spreg.SURerrorGM(bigy, bigX, w[, regimes, …])

	User class for SUR Error estimation by Maximum Likelihood



	spreg.SURerrorML(bigy, bigX, w[, regimes, …])

	User class for SUR Error estimation by Maximum Likelihood



	spreg.SURlagIV(bigy, bigX[, bigyend, bigq, …])

	User class for spatial lag estimation using IV



	spreg.ThreeSLS(bigy, bigX, bigyend, bigq[, …])

	User class for 3SLS estimation









Diagnostics

Diagnostic tests are useful for identifying model fit, sufficiency, and specification correctness.







	spreg.diagnostics.f_stat(reg)

	Calculates the f-statistic and associated p-value of the regression.



	spreg.diagnostics.t_stat(reg[, z_stat])

	Calculates the t-statistics (or z-statistics) and associated p-values.



	spreg.diagnostics.r2(reg)

	Calculates the R^2 value for the regression.



	spreg.diagnostics.ar2(reg)

	Calculates the adjusted R^2 value for the regression.



	spreg.diagnostics.se_betas(reg)

	Calculates the standard error of the regression coefficients.



	spreg.diagnostics.log_likelihood(reg)

	Calculates the log-likelihood value for the regression.



	spreg.diagnostics.akaike(reg)

	Calculates the Akaike Information Criterion.



	spreg.diagnostics.schwarz(reg)

	Calculates the Schwarz Information Criterion.



	spreg.diagnostics.condition_index(reg)

	Calculates the multicollinearity condition index according to Belsey, Kuh and Welsh (1980) [BKW05].



	spreg.diagnostics.jarque_bera(reg)

	Jarque-Bera test for normality in the residuals.



	spreg.diagnostics.breusch_pagan(reg[, z])

	Calculates the Breusch-Pagan test statistic to check for heteroscedasticity.



	spreg.diagnostics.white(reg)

	Calculates the White test to check for heteroscedasticity.



	spreg.diagnostics.koenker_bassett(reg[, z])

	Calculates the Koenker-Bassett test statistic to check for heteroscedasticity.



	spreg.diagnostics.vif(reg)

	Calculates the variance inflation factor for each independent variable.



	spreg.diagnostics.likratiotest(reg0, reg1)

	Likelihood ratio test statistic [Gre03]



	spreg.diagnostics_sp.LMtests(ols, w[, tests])

	Lagrange Multiplier tests.



	spreg.diagnostics_sp.MoranRes(ols, w[, z])

	Moran’s I for spatial autocorrelation in residuals from OLS regression



	spreg.diagnostics_sp.AKtest(iv, w[, case])

	Moran’s I test of spatial autocorrelation for IV estimation.



	spreg.diagnostics_sur.sur_setp(bigB, varb)

	Utility to compute standard error, t and p-value



	spreg.diagnostics_sur.sur_lrtest(n, n_eq, …)

	Likelihood Ratio test on off-diagonal elements of Sigma



	spreg.diagnostics_sur.sur_lmtest(n, n_eq, sig)

	Lagrange Multiplier test on off-diagonal elements of Sigma



	spreg.diagnostics_sur.lam_setp(lam, vm)

	Standard errors, t-test and p-value for lambda in SUR Error ML



	spreg.diagnostics_sur.surLMe(n_eq, WS, bigE, sig)

	Lagrange Multiplier test on error spatial autocorrelation in SUR



	spreg.diagnostics_sur.surLMlag(n_eq, WS, …)

	Lagrange Multiplier test on lag spatial autocorrelation in SUR
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spreg.OLS


	
class spreg.OLS(y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)



	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.  If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.



	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.



	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.



	nonspat_diagboolean
	If True, then compute non-spatial diagnostics on
the regression.



	spat_diagboolean
	If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.



	moranboolean
	If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.



	white_testboolean
	If True, compute White’s specification robust test.
(requires nonspat_diag=True)



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; also, the actual OLS class
requires data to be passed in as numpy arrays so the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an nx1 numpy array.

>>> hoval = db.by_col("HOVAL")
>>> y = np.array(hoval)
>>> y.shape = (len(hoval), 1)





Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). spreg.OLS adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T





The minimum parameters needed to run an ordinary least squares regression
are the two numpy arrays containing the independent variable and dependent
variables respectively.  To make the printed results more meaningful, the
user can pass in explicit names for the variables used; this is optional.

>>> ols = OLS(y, X, name_y='home value', name_x=['income','crime'], name_ds='columbus', white_test=True)





spreg.OLS computes the regression coefficients and their standard
errors, t-stats and p-values. It also computes a large battery of
diagnostics on the regression. In this example we compute the white test
which by default isn’t (‘white_test=True’). All of these results can be independently
accessed as attributes of the regression object created by running
spreg.OLS.  They can also be accessed at one time by printing the
summary attribute of the regression object. In the example below, the
parameter on crime is -0.4849, with a t-statistic of -2.6544 and p-value
of 0.01087.

>>> ols.betas
array([[ 46.42818268],
       [  0.62898397],
       [ -0.48488854]])
>>> print round(ols.t_stat[2][0],3)
-2.654
>>> print round(ols.t_stat[2][1],3)
0.011
>>> print round(ols.r2,3)
0.35





Or we can easily obtain a full summary of all the results nicely formatted and
ready to be printed:

>>> print ols.summary
REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set            :    columbus
Dependent Variable  :  home value                Number of Observations:          49
Mean dependent var  :     38.4362                Number of Variables   :           3
S.D. dependent var  :     18.4661                Degrees of Freedom    :          46
R-squared           :      0.3495
Adjusted R-squared  :      0.3212
Sum squared residual:   10647.015                F-statistic           :     12.3582
Sigma-square        :     231.457                Prob(F-statistic)     :   5.064e-05
S.E. of regression  :      15.214                Log likelihood        :    -201.368
Sigma-square ML     :     217.286                Akaike info criterion :     408.735
S.E of regression ML:     14.7406                Schwarz criterion     :     414.411

------------------------------------------------------------------------------------
            Variable     Coefficient       Std.Error     t-Statistic     Probability
------------------------------------------------------------------------------------
            CONSTANT      46.4281827      13.1917570       3.5194844       0.0009867
               crime      -0.4848885       0.1826729      -2.6544086       0.0108745
              income       0.6289840       0.5359104       1.1736736       0.2465669
------------------------------------------------------------------------------------

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER           12.538

TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2          39.706           0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test                2           5.767           0.0559
Koenker-Bassett test              2           2.270           0.3214

SPECIFICATION ROBUST TEST
TEST                             DF        VALUE           PROB
White                             5           2.906           0.7145
================================ END OF REPORT =====================================





If the optional parameters w and spat_diag are passed to spreg.OLS,
spatial diagnostics will also be computed for the regression.  These
include Lagrange multiplier tests and Moran’s I of the residuals.  The w
parameter is a PySAL spatial weights matrix. In this example, w is built
directly from the shapefile columbus.shp, but w can also be read in from a
GAL or GWT file.  In this case a rook contiguity weights matrix is built,
but PySAL also offers queen contiguity, distance weights and k nearest
neighbor weights among others. In the example, the Moran’s I of the
residuals is 0.204 with a standardized value of 2.592 and a p-value of
0.0095.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))
>>> ols = OLS(y, X, w, spat_diag=True, moran=True, name_y='home value', name_x=['income','crime'], name_ds='columbus')
>>> ols.betas
array([[ 46.42818268],
       [  0.62898397],
       [ -0.48488854]])
>>> print round(ols.moran_res[0],3)
0.204
>>> print round(ols.moran_res[1],3)
2.592
>>> print round(ols.moran_res[2],4)
0.0095






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	robuststring
	Adjustment for robust standard errors



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	r2float
	R squared



	ar2float
	Adjusted R squared



	utufloat
	Sum of squared residuals



	sig2float
	Sigma squared used in computations



	sig2MLfloat
	Sigma squared (maximum likelihood)



	f_stattuple
	Statistic (float), p-value (float)



	logllfloat
	Log likelihood



	aicfloat
	Akaike information criterion



	schwarzfloat
	Schwarz information criterion



	std_errarray
	1xk array of standard errors of the betas



	t_statlist of tuples
	t statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	mulCollifloat
	Multicollinearity condition number



	jarque_beradictionary
	‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)



	breusch_pagandictionary
	‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)



	koenker_bassettdictionary
	‘kb’: Koenker-Bassett statistic (float); ‘pvalue’:
p-value (float); ‘df’: degrees of freedom (int)



	whitedictionary
	‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int)



	lm_errortuple
	Lagrange multiplier test for spatial error model; tuple
contains the pair (statistic, p-value), where each is a
float



	lm_lagtuple
	Lagrange multiplier test for spatial lag model; tuple
contains the pair (statistic, p-value), where each is a
float



	rlm_errortuple
	Robust lagrange multiplier test for spatial error model;
tuple contains the pair (statistic, p-value), where each
is a float



	rlm_lagtuple
	Robust lagrange multiplier test for spatial lag model;
tuple contains the pair (statistic, p-value), where each
is a float



	lm_sarmatuple
	Lagrange multiplier test for spatial SARMA model; tuple
contains the pair (statistic, p-value), where each is a
float



	moran_restuple
	Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	sig2nfloat
	Sigma squared (computed with n in the denominator)



	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)



	xtxfloat
	\(X'X\)



	xtxifloat
	\((X'X)^{-1}\)










	
__init__(self, y, x, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, name_y=None, name_x=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x[, w, robust, gwk, …])

	Initialize self.






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm

	














          

      

      

    

  

  
    
    spreg.ML_Lag
    

    

    
 
  

    
      
          
            
  
spreg.ML_Lag


	
class spreg.ML_Lag(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial lag model with all results and diagnostics; [Ans88]


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wpysal W object
	Spatial weights object



	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method



	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product



	spat_diagboolean
	if True, include spatial diagnostics



	vmboolean
	if True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

>>> import numpy as np
>>> import libpysal
>>> db =  libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'
>>> mllag = ML_Lag(y,x,w,name_y=y_name,name_x=x_names,               name_w=w_name,name_ds=ds_name) 
>>> np.around(mllag.betas, decimals=4) 
array([[ 4.3675],
       [ 0.7502],
       [ 5.6116],
       [ 7.0497],
       [ 7.7246],
       [ 6.1231],
       [ 4.6375],
       [-0.1107],
       [ 0.0679],
       [ 0.0794],
       [ 0.4259]])
>>> "{0:.6f}".format(mllag.rho) 
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y) 
'44.307180'
>>> "{0:.6f}".format(mllag.std_y) 
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4) 
array([  23.8716,    1.1222,    3.0593,    7.3416,    5.6695,    5.4698,
          2.8684,    0.0026,    0.0002,    0.0266,    0.0032,  220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4) 
array([ 23.8716,   1.1222,   3.0593,   7.3416,   5.6695,   5.4698,
         2.8684,   0.0026,   0.0002,   0.0266,   0.0032])
>>> "{0:.6f}".format(mllag.sig2) 
'151.458698'
>>> "{0:.6f}".format(mllag.logll) 
'-832.937174'
>>> "{0:.6f}".format(mllag.aic) 
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz) 
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2) 
'0.727081'
>>> "{0:.4f}".format(mllag.pr2_e) 
'0.7062'
>>> "{0:.4f}".format(mllag.utu) 
'31957.7853'
>>> np.around(mllag.std_err, decimals=4) 
array([ 4.8859,  1.0593,  1.7491,  2.7095,  2.3811,  2.3388,  1.6936,
        0.0508,  0.0146,  0.1631,  0.057 ])
>>> np.around(mllag.z_stat, decimals=4) 
array([[ 0.8939,  0.3714],
       [ 0.7082,  0.4788],
       [ 3.2083,  0.0013],
       [ 2.6018,  0.0093],
       [ 3.2442,  0.0012],
       [ 2.6181,  0.0088],
       [ 2.7382,  0.0062],
       [-2.178 ,  0.0294],
       [ 4.6487,  0.    ],
       [ 0.4866,  0.6266],
       [ 7.4775,  0.    ]])
>>> mllag.name_y 
'PRICE'
>>> mllag.name_x 
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w 
'baltim_q.gal'
>>> mllag.name_ds 
'baltim.dbf'
>>> mllag.title 
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)'
>>> mllag = ML_Lag(y,x,w,method='ord',name_y=y_name,name_x=x_names,               name_w=w_name,name_ds=ds_name) 
>>> np.around(mllag.betas, decimals=4) 
array([[ 4.3675],
       [ 0.7502],
       [ 5.6116],
       [ 7.0497],
       [ 7.7246],
       [ 6.1231],
       [ 4.6375],
       [-0.1107],
       [ 0.0679],
       [ 0.0794],
       [ 0.4259]])
>>> "{0:.6f}".format(mllag.rho) 
'0.425885'
>>> "{0:.6f}".format(mllag.mean_y) 
'44.307180'
>>> "{0:.6f}".format(mllag.std_y) 
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4) 
array([  23.8716,    1.1222,    3.0593,    7.3416,    5.6695,    5.4698,
          2.8684,    0.0026,    0.0002,    0.0266,    0.0032,  220.1292])
>>> np.around(np.diag(mllag.vm), decimals=4) 
array([ 23.8716,   1.1222,   3.0593,   7.3416,   5.6695,   5.4698,
         2.8684,   0.0026,   0.0002,   0.0266,   0.0032])
>>> "{0:.6f}".format(mllag.sig2) 
'151.458698'
>>> "{0:.6f}".format(mllag.logll) 
'-832.937174'
>>> "{0:.6f}".format(mllag.aic) 
'1687.874348'
>>> "{0:.6f}".format(mllag.schwarz) 
'1724.744787'
>>> "{0:.6f}".format(mllag.pr2) 
'0.727081'
>>> "{0:.6f}".format(mllag.pr2_e) 
'0.706198'
>>> "{0:.4f}".format(mllag.utu) 
'31957.7853'
>>> np.around(mllag.std_err, decimals=4) 
array([ 4.8859,  1.0593,  1.7491,  2.7095,  2.3811,  2.3388,  1.6936,
        0.0508,  0.0146,  0.1631,  0.057 ])
>>> np.around(mllag.z_stat, decimals=4) 
array([[ 0.8939,  0.3714],
       [ 0.7082,  0.4788],
       [ 3.2083,  0.0013],
       [ 2.6018,  0.0093],
       [ 3.2442,  0.0012],
       [ 2.6181,  0.0088],
       [ 2.7382,  0.0062],
       [-2.178 ,  0.0294],
       [ 4.6487,  0.    ],
       [ 0.4866,  0.6266],
       [ 7.4775,  0.    ]])
>>> mllag.name_y 
'PRICE'
>>> mllag.name_x 
['CONSTANT', 'NROOM', 'NBATH', 'PATIO', 'FIREPL', 'AC', 'GAR', 'AGE', 'LOTSZ', 'SQFT', 'W_PRICE']
>>> mllag.name_w 
'baltim_q.gal'
>>> mllag.name_ds 
'baltim.dbf'
>>> mllag.title 
'MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = ORD)'






	Attributes

	
	betasarray
	(k+1)x1 array of estimated coefficients (rho first)



	rhofloat
	estimate of spatial autoregressive coefficient



	uarray
	nx1 array of residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	methodstring
	log Jacobian method
if ‘full’: brute force (full matrix computations)



	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients



	vm1array
	Variance covariance matrix (k+2 x k+2), includes sig2



	sig2float
	Sigma squared used in computations



	logllfloat
	maximized log-likelihood (including constant terms)



	aicfloat
	Akaike information criterion



	schwarzfloat
	Schwarz criterion



	predy_earray
	predicted values from reduced form



	e_predarray
	prediction errors using reduced form predicted values



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))



	utufloat
	Sum of squared residuals



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, w[, method, epsilon, …])

	Initialize self.






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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class spreg.ML_Error(y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	ML estimation of the spatial error model with all results and diagnostics;
[Ans88]


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wSparse matrix
	Spatial weights sparse matrix



	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition



	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product



	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)



	vmboolean
	if True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> np.set_printoptions(suppress=True) #prevent scientific format
>>> db = libpysal.io.open(examples.get_path("south.dbf"),'r')
>>> y_name = "HR90"
>>> y = np.array(db.by_col(y_name))
>>> y.shape = (len(y),1)
>>> x_names = ["RD90","PS90","UE90","DV90"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = libpysal.io.open(libpysal.examples.get_path("south_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "south_q.gal"
>>> w.transform = 'r'
>>> mlerr = ML_Error(y,x,w,name_y=y_name,name_x=x_names,               name_w=w_name,name_ds=ds_name) 
>>> np.around(mlerr.betas, decimals=4) 
array([[ 6.1492],
       [ 4.4024],
       [ 1.7784],
       [-0.3781],
       [ 0.4858],
       [ 0.2991]])
>>> "{0:.4f}".format(mlerr.lam) 
'0.2991'
>>> "{0:.4f}".format(mlerr.mean_y) 
'9.5493'
>>> "{0:.4f}".format(mlerr.std_y) 
'7.0389'
>>> np.around(np.diag(mlerr.vm), decimals=4) 
array([ 1.0648,  0.0555,  0.0454,  0.0061,  0.0148,  0.0014])
>>> np.around(mlerr.sig2, decimals=4) 
array([[ 32.4069]])
>>> "{0:.4f}".format(mlerr.logll) 
'-4471.4071'
>>> "{0:.4f}".format(mlerr.aic) 
'8952.8141'
>>> "{0:.4f}".format(mlerr.schwarz) 
'8979.0779'
>>> "{0:.4f}".format(mlerr.pr2) 
'0.3058'
>>> "{0:.4f}".format(mlerr.utu) 
'48534.9148'
>>> np.around(mlerr.std_err, decimals=4) 
array([ 1.0319,  0.2355,  0.2132,  0.0784,  0.1217,  0.0378])
>>> np.around(mlerr.z_stat, decimals=4) 
array([[  5.9593,   0.    ],
       [ 18.6902,   0.    ],
       [  8.3422,   0.    ],
       [ -4.8233,   0.    ],
       [  3.9913,   0.0001],
       [  7.9089,   0.    ]])
>>> mlerr.name_y 
'HR90'
>>> mlerr.name_x 
['CONSTANT', 'RD90', 'PS90', 'UE90', 'DV90', 'lambda']
>>> mlerr.name_w 
'south_q.gal'
>>> mlerr.name_ds 
'south.dbf'
>>> mlerr.title 
'MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)'






	Attributes

	
	betasarray
	(k+1)x1 array of estimated coefficients (rho first)



	lamfloat
	estimate of spatial autoregressive coefficient



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding lambda)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	methodstring
	log Jacobian method
if ‘full’: brute force (full matrix computations)



	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	varbarray
	Variance covariance matrix (k+1 x k+1) - includes var(lambda)



	vm1array
	variance covariance matrix for lambda, sigma (2 x 2)



	sig2float
	Sigma squared used in computations



	logllfloat
	maximized log-likelihood (including constant terms)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	utufloat
	Sum of squared residuals



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used









Methods







	get_x_lag

	






	
__init__(self, y, x, w, method='full', epsilon=1e-07, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, w[, method, epsilon, …])

	Initialize self.



	get_x_lag(self, w, regimes_att)

	






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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class spreg.GM_Lag(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with results and diagnostics; 
Anselin (1988) [Ans88]


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x); cannot be
used in combination with h



	wpysal W object
	Spatial weights object



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.  If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.



	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.



	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.



	spat_diagboolean
	If True, then compute Anselin-Kelejian test



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. Since we will need some tests for our
model, we also import the diagnostics module.

>>> import numpy as np
>>> import libpysal
>>> import spreg.diagnostics as D





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')





Extract the HOVAL column (home value) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) and CRIME (crime rates) vectors from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is
optional. The default most basic model to be run would be:

>>> reg=GM_Lag(y, X, w=w, w_lags=2, name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[ 45.30170561],
       [  0.62088862],
       [ -0.48072345],
       [  0.02836221]])





Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([ 17.91278862,   0.52486082,   0.1822815 ,   0.31740089])





But we can also run models that incorporates corrected standard errors
following the White procedure. For that, we will have to include the
optional parameter robust='white':

>>> reg=GM_Lag(y, X, w=w, w_lags=2, robust='white', name_x=['inc', 'crime'], name_y='hoval', name_ds='columbus')
>>> reg.betas
array([[ 45.30170561],
       [  0.62088862],
       [ -0.48072345],
       [  0.02836221]])





And we can access the standard errors from the model object:

>>> reg.std_err
array([ 20.47077481,   0.50613931,   0.20138425,   0.38028295])





The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will assume that
CRIME is actually endogenous and we decide to instrument for it with
DISCBD (distance to the CBD). We reload the X including INC only and
define CRIME as endogenous and DISCBD as instrument:

>>> X = np.array(db.by_col("INC"))
>>> X = np.reshape(X, (49,1))
>>> yd = np.array(db.by_col("CRIME"))
>>> yd = np.reshape(yd, (49,1))
>>> q = np.array(db.by_col("DISCBD"))
>>> q = np.reshape(q, (49,1))





And we can run the model again:

>>> reg=GM_Lag(y, X, w=w, yend=yd, q=q, w_lags=2, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> reg.betas
array([[ 100.79359082],
       [  -0.50215501],
       [  -1.14881711],
       [  -0.38235022]])





Once the model is run, we can obtain the standard error of the coefficient
estimates by calling the diagnostics module:

>>> D.se_betas(reg)
array([ 53.0829123 ,   1.02511494,   0.57589064,   0.59891744])






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	kstarinteger
	Number of endogenous variables.



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	robuststring
	Adjustment for robust standard errors



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))



	utufloat
	Sum of squared residuals



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	sig2nfloat
	Sigma squared (computed with n in the denominator)



	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)



	hthfloat
	\(H'H\)



	hthifloat
	\((H'H)^{-1}\)



	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\)



	zthhthiarray
	\(Z'H(H'H)^{-1}\)



	pfora1a2array
	n(zthhthi)’varb










	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.






Attributes







	mean_y

	



	pfora1a2

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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class spreg.GM_Error(y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model, with results and diagnostics; based
on Kelejian and Prucha (1998, 1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wpysal W object
	Spatial weights object (always needed)



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array([dbf.by_col('HOVAL')]).T





Extract CRIME (crime) and INC (income) vectors from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> names_to_extract = ['INC', 'CRIME']
>>> x = np.array([dbf.by_col(name) for name in names_to_extract]).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read() 





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'





We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error(y, x, w=w, name_y='hoval', name_x=['income', 'crime'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas).

>>> print model.name_x
['CONSTANT', 'income', 'crime', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[ 47.6946],
       [  0.7105],
       [ -0.5505],
       [  0.3257]])
>>> np.around(model.std_err, decimals=4)
array([ 12.412 ,   0.5044,   0.1785])
>>> np.around(model.z_stat, decimals=6) 
array([[  3.84261100e+00,   1.22000000e-04],
       [  1.40839200e+00,   1.59015000e-01],
       [ -3.08424700e+00,   2.04100000e-03]])
>>> round(model.sig2,4)
198.5596






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	vmarray
	Variance covariance matrix (kxk)



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, w, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, w[, vm, name_y, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Error_Het


	
class spreg.GM_Error_Het(y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity, with results
and diagnostics; based on [ADKP10], following
[Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wpysal W object
	Spatial weights object



	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional
stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from [ADKP10].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het(y, X, w=w, step1c=True, name_y='home value', name_x=['income', 'crime'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter.

>>> print reg.name_x
['CONSTANT', 'income', 'crime', 'lambda']





Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[ 47.9963  11.479 ]
 [  0.7105   0.3681]
 [ -0.5588   0.1616]
 [  0.4118   0.168 ]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	vmarray
	Variance covariance matrix (kxk)



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	xtxfloat
	\(X'X\)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, w, max_iter=1, epsilon=1e-05, step1c=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, w[, max_iter, epsilon, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Error_Hom


	
class spreg.GM_Error_Hom(y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity, with results
and diagnostics; based on Drukker et al. (2013) [DEP13], following Anselin
(2011) [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	wpysal W object
	Spatial weights object



	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in Arraiz et
al. If A1=’hom’, then as in [Ans11].  If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) and CRIME (crime) vectors from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("CRIME"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom(y, X, w=w, A1='hom_sc', name_y='home value', name_x=['income', 'crime'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters:

>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[ 47.9479  12.3021]
 [  0.7063   0.4967]
 [ -0.556    0.179 ]
 [  0.4129   0.1835]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from Arraiz et al.



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	vmarray
	Variance covariance matrix (kxk)



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	xtxfloat
	\(X'X\)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, w[, max_iter, epsilon, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Combo


	
class spreg.GM_Combo(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with endogenous variables,
with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (always needed)



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')





Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo(y, X, w=w, name_y='crime', name_x=['income'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can check the betas:

>>> print reg.name_z
['CONSTANT', 'income', 'W_crime', 'lambda']
>>> print np.around(np.hstack((reg.betas[:-1],np.sqrt(reg.vm.diagonal()).reshape(3,1))),3)
[[ 39.059  11.86 ]
 [ -1.404   0.391]
 [  0.467   0.2  ]]





And lambda:

>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda:  [-0.048]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include HOVAL (home value) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo(y, X, yd, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'hoval', 'W_crime', 'lambda']
>>> names = np.array(reg.name_z).reshape(5,1)
>>> print np.hstack((names[0:4,:], np.around(np.hstack((reg.betas[:-1], np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)))
[['CONSTANT' '50.0944' '14.3593']
 ['inc' '-0.2552' '0.5667']
 ['hoval' '-0.6885' '0.3029']
 ['W_crime' '0.4375' '0.2314']]





>>> print 'lambda: ', np.around(reg.betas[-1], 3)
lambda:  [ 0.254]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	zarray
	nxk array of variables (combination of x and yend)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))



	sig2float
	Sigma squared used in computations (based on filtered
residuals)



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Combo_Het


	
class spreg.GM_Combo_Het(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on
[ADKP10], following [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (always needed)



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from [ADKP10].



	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Het(y, X, w=w, step1c=True, name_y='hoval', name_x=['income'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'income', 'W_hoval', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[  9.9753  14.1435]
 [  1.5742   0.374 ]
 [  0.1535   0.3978]
 [  0.2103   0.3924]]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')
>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'W_hoval', 'lambda']
>>> print np.round(reg.betas,4)
[[ 113.9129]
 [  -0.3482]
 [  -1.3566]
 [  -0.5766]
 [   0.6561]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	hthfloat
	\(H'H\)










	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.






Attributes







	mean_y

	



	std_y

	














          

      

      

    

  

  
    
    spreg.GM_Combo_Hom
    

    

    
 
  

    
      
          
            
  
spreg.GM_Combo_Hom


	
class spreg.GM_Combo_Hom(y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial lag and error model with homoskedasticity and
endogenous variables, with results and diagnostics; based on Drukker et
al. (2013) [DEP13], following Anselin (2011) [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (always necessary)



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in [ADKP10].
If A1=’hom’, then as in [Ans11].  If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Combo_Hom(y, X, w=w, A1='hom_sc', name_x=['inc'],            name_y='hoval', name_yend=['crime'], name_q=['discbd'],            name_ds='columbus')
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[ 10.1254  15.2871]
 [  1.5683   0.4407]
 [  0.1513   0.4048]
 [  0.2103   0.4226]]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. As an example, we will include CRIME (crime rates) as
endogenous and will instrument with DISCBD (distance to the CSB). We first
need to read in the variables:

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T
>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom(y, X, yd, q, w=w, A1='hom_sc',             name_ds='columbus')
>>> betas = np.array([['CONSTANT'],['inc'],['crime'],['W_hoval'],['lambda']])
>>> print np.hstack((betas, np.around(np.hstack((reg.betas, np.sqrt(reg.vm.diagonal()).reshape(5,1))),5)))
[['CONSTANT' '111.7705' '67.75191']
 ['inc' '-0.30974' '1.16656']
 ['crime' '-1.36043' '0.6841']
 ['W_hoval' '-0.52908' '0.84428']
 ['lambda' '0.60116' '0.18605']]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))



	sig2float
	Sigma squared used in computations (based on filtered
residuals)



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	hthfloat
	\(H'H\)










	
__init__(self, y, x, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x[, yend, q, w, w_lags, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Endog_Error


	
class spreg.GM_Endog_Error(y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (always needed)



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> dbf = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')





Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array([dbf.by_col('CRIME')]).T





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in.

>>> x = np.array([dbf.by_col('INC')]).T





In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yend = np.array([dbf.by_col('HOVAL')]).T





Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = np.array([dbf.by_col('DISCBD')]).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will use
columbus.gal, which contains contiguity relationships between the
observations in the Columbus dataset we are using throughout this example.
Note that, in order to read the file, not only to open it, we need to
append ‘.read()’ at the end of the command.

>>> w = libpysal.io.open(libpysal.examples.get_path("columbus.gal"), 'r').read() 





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform='r'





We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> from spreg import GM_Endog_Error
>>> model = GM_Endog_Error(y, x, yend, q, w=w, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included.

>>> print model.name_z
['CONSTANT', 'inc', 'hoval', 'lambda']
>>> np.around(model.betas, decimals=4)
array([[ 82.573 ],
       [  0.581 ],
       [ -1.4481],
       [  0.3499]])
>>> np.around(model.std_err, decimals=4)
array([ 16.1381,   1.3545,   0.7862])






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	zarray
	nxk array of variables (combination of x and yend)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used










	
__init__(self, y, x, yend, q, w, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, w[, vm, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Endog_Error_Het


	
class spreg.GM_Endog_Error_Het(y, x, yend, q, w, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with heteroskedasticity and
endogenous variables, with results and diagnostics; based on
[ADKP10], following [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from [ADKP10].



	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T





Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het(y, X, yd, q, w=w, step1c=True, name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[ 55.3971  28.8901]
 [  0.4656   0.7731]
 [ -0.6704   0.468 ]
 [  0.4114   0.1777]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	hthfloat
	\(H'H\)










	
__init__(self, y, x, yend, q, w, max_iter=1, epsilon=1e-05, step1c=False, inv_method='power_exp', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, w[, max_iter, …])

	Initialize self.






Attributes







	mean_y

	



	std_y

	














          

      

      

    

  

  
    
    spreg.GM_Endog_Error_Hom
    

    

    
 
  

    
      
          
            
  
spreg.GM_Endog_Error_Hom


	
class spreg.GM_Endog_Error_Hom(y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	GMM method for a spatial error model with homoskedasticity and endogenous
variables, with results and diagnostics; based on Drukker et al. (2013)
[DEP13], following Anselin (2011) [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in [ADKP10].
If A1=’hom’, then as in [Ans11]. If
A1=’hom_sc’ (default), then as in [DEP13]
and [DPR13].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Extract the HOVAL column (home values) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("HOVAL"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this class adds a vector of ones to the
independent variables passed in.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





In this case we consider CRIME (crime rates) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("CRIME"))
>>> yd = np.array(yd).T





Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for CRIME. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, his allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom(y, X, yd, q, w=w, A1='hom_sc', name_x=['inc'], name_y='hoval', name_yend=['crime'], name_q=['discbd'], name_ds='columbus')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix:

>>> print reg.name_z
['CONSTANT', 'inc', 'crime', 'lambda']
>>> print np.around(np.hstack((reg.betas,np.sqrt(reg.vm.diagonal()).reshape(4,1))),4)
[[ 55.3658  23.496 ]
 [  0.4643   0.7382]
 [ -0.669    0.3943]
 [  0.4321   0.1927]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	hthfloat
	\(H'H\)










	
__init__(self, y, x, yend, q, w, max_iter=1, epsilon=1e-05, A1='hom_sc', vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, w[, max_iter, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.TSLS


	
class spreg.TSLS(y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Two stage least squares with results and diagnostics.


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note:
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)



	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.  If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.



	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.



	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.



	spat_diagboolean
	If True, then compute Anselin-Kelejian test (requires w)



	vmboolean
	If True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')





Extract the CRIME column (crime rates) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





In this case we consider HOVAL (home value) is an endogenous regressor.
We tell the model that this is so by passing it in a different parameter
from the exogenous variables (x).

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T





Because we have endogenous variables, to obtain a correct estimate of the
model, we need to instrument for HOVAL. We use DISCBD (distance to the
CBD) for this and hence put it in the instruments parameter, ‘q’.

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





We are all set with the preliminars, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous) and the
instruments. If we want to have the names of the variables printed in the
output summary, we will have to pass them in as well, although this is optional.

>>> reg = TSLS(y, X, yd, q, name_x=['inc'], name_y='crime', name_yend=['hoval'], name_q=['discbd'], name_ds='columbus')
>>> print reg.betas
[[ 88.46579584]
 [  0.5200379 ]
 [ -1.58216593]]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)



	kstarinteger
	Number of endogenous variables.



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments



	zarray
	nxk array of variables (combination of x and yend)



	harray
	nxl array of instruments (combination of x and q)



	robuststring
	Adjustment for robust standard errors



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)



	utufloat
	Sum of squared residuals



	sig2float
	Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float



	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	titlestring
	Name of the regression method used



	sig2nfloat
	Sigma squared (computed with n in the denominator)



	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)



	hthfloat
	\(H'H\)



	hthifloat
	\((H'H)^{-1}\)



	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\)



	zthhthiarray
	\(Z'H(H'H)^{-1}\)



	pfora1a2array
	\(n(zthhthi)'varb\)










	
__init__(self, y, x, yend, q, w=None, robust=None, gwk=None, sig2n_k=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q[, w, robust, …])

	Initialize self.






Attributes







	mean_y

	



	pfora1a2

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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spreg.ThreeSLS


	
class spreg.ThreeSLS(bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	User class for 3SLS estimation


	Parameters

	
	bigydictionary
	with vector for dependent variable by equation



	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)



	bigyenddictionary
	with matrix of endogenous variables by equation



	bigqdictionary
	with matrix of instruments by equation



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True.



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used



	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified.
is done when sur_stackxy is used



	name_bigyenddictionary
	with names of endogenous variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used



	name_bigqdictionary
	with names of instrumental variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used.



	name_dsstring
	name for the data set.



	name_regimesstring
	name of regime variable for use in the output.









Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]





The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)





We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = ThreeSLS(bigy,bigX,bigyend,bigq,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT")
>>> reg.b3SLS
{0: array([[ 6.92426353],
       [ 1.42921826],
       [ 0.00049435],
       [ 3.5829275 ]]), 1: array([[ 7.62385875],
       [ 1.65031181],
       [-0.21682974],
       [ 3.91250428]])}





>>> reg.tsls_inf
{0: array([[  0.23220853,  29.81916157,   0.        ],
       [  0.10373417,  13.77770036,   0.        ],
       [  0.03086193,   0.01601807,   0.98721998],
       [  0.11131999,  32.18584124,   0.        ]]), 1: array([[  0.28739415,  26.52753638,   0.        ],
       [  0.09597031,  17.19606554,   0.        ],
       [  0.04089547,  -5.30204786,   0.00000011],
       [  0.13586789,  28.79638723,   0.        ]])}






	Attributes

	
	bigydictionary
	with y values



	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation



	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s



	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s



	n_eqint
	number of equations



	nint
	number of observations in each cross-section



	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation



	b2SLSdictionary
	with 2SLS regression coefficients for each equation



	tslsEarray
	N x n_eq array with OLS residuals for each equation



	b3SLSdictionary
	with 3SLS regression coefficients for each equation



	varbarray
	variance-covariance matrix



	sigarray
	Sigma matrix of inter-equation error covariances



	bigEarray
	n by n_eq array of residuals



	corrarray
	inter-equation 3SLS error correlation matrix



	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation



	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value



	name_dsstring
	name for the data set



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_bigyenddictionary
	with names of endogenous variables for each
equation



	name_bigqdictionary
	with names of instrumental variables for each
equations



	name_regimesstring
	name of regime variable for use in the output










	
__init__(self, bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX, bigyend, bigq[, …])

	Initialize self.
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spreg.OLS_Regimes


	
class spreg.OLS_Regimes(y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Ordinary least squares with results and diagnostics.


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object (required if running spatial
diagnostics)



	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.  If ‘hac’, then a
HAC consistent estimator of the variance-covariance
matrix is given. Default set to None.



	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.



	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.



	nonspat_diagboolean
	If True, then compute non-spatial diagnostics on
the regression.



	spat_diagboolean
	If True, then compute Lagrange multiplier tests (requires
w). Note: see moran for further tests.



	moranboolean
	If True, compute Moran’s I on the residuals. Note:
requires spat_diag=True.



	white_testboolean
	If True, compute White’s specification robust test.
(requires nonspat_diag=True)



	vmboolean
	If True, include variance-covariance matrix in summary
results



	constant_regi: string, optional
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime (default)






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it
the dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = db.by_col(y_var)
>>> y = np.array(y).reshape(len(y), 1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





We can now run the regression and then have a summary of the output
by typing: olsr.summary
Alternatively, we can just check the betas and standard errors of the
parameters:

>>> olsr = OLS_Regimes(y, x, regimes, nonspat_diag=False, name_y=y_var, name_x=['PS90','UE90'], name_regimes=r_var, name_ds='NAT')
>>> olsr.betas
array([[ 0.39642899],
       [ 0.65583299],
       [ 0.48703937],
       [ 5.59835   ],
       [ 1.16210453],
       [ 0.53163886]])
>>> np.sqrt(olsr.vm.diagonal())
array([ 0.24816345,  0.09662678,  0.03628629,  0.46894564,  0.21667395,
        0.05945651])
>>> olsr.cols2regi
'all'






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	robuststring
	Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	r2float
	R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	ar2float
	Adjusted R squared
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	utufloat
	Sum of squared residuals



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2MLfloat
	Sigma squared (maximum likelihood)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	f_stattuple
	Statistic (float), p-value (float)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	logllfloat
	Log likelihood
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	aicfloat
	Akaike information criterion 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	schwarzfloat
	Schwarz information criterion     
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	t_statlist of tuples
	t statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mulCollifloat
	Multicollinearity condition number
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	jarque_beradictionary
	‘jb’: Jarque-Bera statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)  
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	breusch_pagandictionary
	‘bp’: Breusch-Pagan statistic (float); ‘pvalue’: p-value
(float); ‘df’: degrees of freedom (int)  
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	koenker_bassett: dictionary
	‘kb’: Koenker-Bassett statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int). Only available in dictionary
‘multi’ when multiple regressions (see ‘multi’ below for details).



	whitedictionary
	‘wh’: White statistic (float); ‘pvalue’: p-value (float);
‘df’: degrees of freedom (int).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	lm_errortuple
	Lagrange multiplier test for spatial error model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	lm_lagtuple
	Lagrange multiplier test for spatial lag model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	rlm_errortuple
	Robust lagrange multiplier test for spatial error model;
tuple contains the pair (statistic, p-value), where each
is a float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	rlm_lagtuple
	Robust lagrange multiplier test for spatial lag model;
tuple contains the pair (statistic, p-value), where each
is a float. Only available in dictionary ‘multi’ when
multiple regressions (see ‘multi’ below for details)



	lm_sarmatuple
	Lagrange multiplier test for spatial SARMA model; tuple
contains the pair (statistic, p-value), where each is a
float. Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	moran_restuple
	Moran’s I for the residuals; tuple containing the triple
(Moran’s I, standardized Moran’s I, p-value)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output



	titlestring
	Name of the regression method used.
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2nfloat
	Sigma squared (computed with n in the denominator)



	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)



	xtxfloat
	\(X'X\). Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	xtxifloat
	\((X'X)^{-1}\). Only available in dictionary ‘multi’ when multiple
regressions (see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each observation to
a regime. Assumed to be aligned with ‘x’.



	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime.






	cols2regilist
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate.



	nrint
	Number of different regimes in the ‘regimes’ list.



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression.










	
__init__(self, y, x, regimes, w=None, robust=None, gwk=None, sig2n_k=True, nonspat_diag=True, spat_diag=False, moran=False, white_test=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=True, cores=False, name_y=None, name_x=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes[, w, robust, …])

	Initialize self.






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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spreg.ML_Lag_Regimes


	
class spreg.ML_Lag_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial lag model with regimes (note no consistency 
checks, diagnostics or constants added) [Ans88].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime (default)






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	wSparse matrix
	Spatial weights sparse matrix



	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition



	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)



	vmboolean
	if True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output









Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> db =  libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'    





Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or 
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")





Now we can run the regression with all parameters:

>>> mllag = ML_Lag_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names,               name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mllag.betas, decimals=4)
array([[-15.0059],
       [  4.496 ],
       [ -0.0318],
       [  0.35  ],
       [ -4.5404],
       [  3.9219],
       [ -0.1702],
       [  0.8194],
       [  0.5385]])
>>> "{0:.6f}".format(mllag.rho)
'0.538503'
>>> "{0:.6f}".format(mllag.mean_y)
'44.307180'
>>> "{0:.6f}".format(mllag.std_y)
'23.606077'
>>> np.around(np.diag(mllag.vm1), decimals=4)
array([  47.42  ,    2.3953,    0.0051,    0.0648,   69.6765,    3.2066,
          0.0116,    0.0486,    0.004 ,  390.7274])
>>> np.around(np.diag(mllag.vm), decimals=4)
array([ 47.42  ,   2.3953,   0.0051,   0.0648,  69.6765,   3.2066,
         0.0116,   0.0486,   0.004 ])
>>> "{0:.6f}".format(mllag.sig2)
'200.044334'
>>> "{0:.6f}".format(mllag.logll)
'-864.985056'
>>> "{0:.6f}".format(mllag.aic)
'1747.970112'
>>> "{0:.6f}".format(mllag.schwarz)
'1778.136835'
>>> mllag.title
'MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES (METHOD = full)'






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	(k+1)x1 array of estimated coefficients (rho first)



	rhofloat
	estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	uarray
	nx1 array of residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	methodstring
	log Jacobian method.
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue method
if ‘LU’, LU sparse matrix decomposition



	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients



	vm1array
	Variance covariance matrix (k+2 x k+2), includes sig2
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	logllfloat
	maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	aicfloat
	Akaike information criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	schwarzfloat
	Schwarz criterion
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	predy_earray
	predicted values from reduced form



	e_predarray
	prediction errors using reduced form predicted values



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: [‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.



	regime_err_sep: boolean
	always set to False - kept for compatibility with other
regime models



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression









Methods







	ML_Lag_Regimes_Multi

	






	
__init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	ML_Lag_Regimes_Multi(self, y, x, w_i, w, …)

	



	__init__(self, y, x, regimes[, w, …])

	Initialize self.






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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spreg.ML_Error_Regimes


	
class spreg.ML_Error_Regimes(y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	ML estimation of the spatial error model with regimes (note no consistency 
checks, diagnostics or constants added); Anselin (1988) [Anselin1988]


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	wSparse matrix
	Spatial weights sparse matrix



	methodstring
	if ‘full’, brute force calculation (full matrix expressions)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition



	epsilonfloat
	tolerance criterion in mimimize_scalar function and inverse_product



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	Always False, kept for consistency in function call, ignored.



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	spat_diagboolean
	if True, include spatial diagnostics (not implemented yet)



	vmboolean
	if True, include variance-covariance matrix in summary
results



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output









Examples

Open data baltim.dbf using pysal and create the variables matrices and weights matrix.

>>> import numpy as np
>>> import libpysal
>>> db = libpysal.io.open(libpysal.examples.get_path("baltim.dbf"),'r')
>>> ds_name = "baltim.dbf"
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","AGE","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w_name = "baltim_q.gal"
>>> w.transform = 'r'    





Since in this example we are interested in checking whether the results vary
by regimes, we use CITCOU to define whether the location is in the city or 
outside the city (in the county):

>>> regimes = db.by_col("CITCOU")





Now we can run the regression with all parameters:

>>> mlerr = ML_Error_Regimes(y,x,regimes,w=w,name_y=y_name,name_x=x_names,               name_w=w_name,name_ds=ds_name,name_regimes="CITCOU")
>>> np.around(mlerr.betas, decimals=4)
array([[ -2.3949],
       [  4.8738],
       [ -0.0291],
       [  0.3328],
       [ 31.7962],
       [  2.981 ],
       [ -0.2371],
       [  0.8058],
       [  0.6177]])
>>> "{0:.6f}".format(mlerr.lam)
'0.617707'
>>> "{0:.6f}".format(mlerr.mean_y)
'44.307180'
>>> "{0:.6f}".format(mlerr.std_y)
'23.606077'
>>> np.around(mlerr.vm1, decimals=4)
array([[   0.005 ,   -0.3535],
       [  -0.3535,  441.3039]])
>>> np.around(np.diag(mlerr.vm), decimals=4)
array([ 58.5055,   2.4295,   0.0072,   0.0639,  80.5925,   3.161 ,
         0.012 ,   0.0499,   0.005 ])
>>> np.around(mlerr.sig2, decimals=4)
array([[ 209.6064]])
>>> "{0:.6f}".format(mlerr.logll)
'-870.333106'
>>> "{0:.6f}".format(mlerr.aic)
'1756.666212'
>>> "{0:.6f}".format(mlerr.schwarz)
'1783.481077'
>>> mlerr.title
'MAXIMUM LIKELIHOOD SPATIAL ERROR - REGIMES (METHOD = full)'






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	(k+1)x1 array of estimated coefficients (lambda last)



	lamfloat
	estimate of spatial autoregressive coefficient
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant, excluding the rho)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	methodstring
	log Jacobian method.
if ‘full’: brute force (full matrix computations)
if ‘ord’, Ord eigenvalue computation
if ‘LU’, LU sparse matrix decomposition



	epsilonfloat
	tolerance criterion used in minimize_scalar function and inverse_product



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (k+1 x k+1), all coefficients



	vm1array
	variance covariance matrix for lambda, sigma (2 x 2)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	logllfloat
	maximized log-likelihood (including constant terms)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression









Methods







	get_x_lag

	






	
__init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=1e-07, regime_err_sep=False, regime_lag_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes[, w, …])

	Initialize self.



	get_x_lag(self, w, regimes_att)

	






Attributes







	mean_y

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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spreg.GM_Lag_Regimes


	
class spreg.GM_Lag_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Spatial two stage least squares (S2SLS) with regimes; 
[Ans88]


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x); cannot be
used in combination with h



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	wpysal W object
	Spatial weights object



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	regime_lag_sep: boolean
	If True (default), the spatial parameter for spatial lag is also
computed according to different regimes. If False,
the spatial parameter is fixed accross regimes.
Option valid only when regime_err_sep=True



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	robuststring
	If ‘white’, then a White consistent estimator of the
variance-covariance matrix is given.
If ‘hac’, then a HAC consistent estimator of the 
variance-covariance matrix is given.
If ‘ogmm’, then Optimal GMM is used to estimate
betas and the variance-covariance matrix.
Default set to None.



	gwkpysal W object
	Kernel spatial weights needed for HAC estimation. Note:
matrix must have ones along the main diagonal.



	sig2n_kboolean
	If True, then use n-k to estimate sigma^2. If False, use n.



	spat_diagboolean
	If True, then compute Anselin-Kelejian test



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> from libpysal import weights
>>> w = weights.Rook.from_shapefile(examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





This class runs a lag model, which means that includes the spatial lag of
the dependent variable on the right-hand side of the equation. If we want
to have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[ 1.28897623],
       [ 0.79777722],
       [ 0.56366891],
       [ 8.73327838],
       [ 1.30433406],
       [ 0.62418643],
       [-0.39993716]])





Once the model is run, we can have a summary of the output by typing:
model.summary . Alternatively, we can obtain the standard error of 
the coefficient estimates by calling:

>>> model.std_err
array([ 0.44682888,  0.14358192,  0.05655124,  1.06044865,  0.20184548,
        0.06118262,  0.12387232])





In the example above, all coefficients but the spatial lag vary
according to the regime. It is also possible to have the spatial lag
varying according to the regime, which effective will result in an
independent spatial lag model estimated for each regime. To run these
models, the argument regime_lag_sep must be set to True:

>>> model=GM_Lag_Regimes(y, x, regimes, w=w, regime_lag_sep=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> print np.hstack((np.array(model.name_z).reshape(8,1),model.betas,np.sqrt(model.vm.diagonal().reshape(8,1))))
[['0_CONSTANT' '1.36584769' '0.39854720']
 ['0_PS90' '0.80875730' '0.11324884']
 ['0_UE90' '0.56946813' '0.04625087']
 ['0_W_HR90' '-0.4342438' '0.13350159']
 ['1_CONSTANT' '7.90731073' '1.63601874']
 ['1_PS90' '1.27465703' '0.24709870']
 ['1_UE90' '0.60167693' '0.07993322']
 ['1_W_HR90' '-0.2960338' '0.19934459']]





Alternatively, we can type: ‘model.summary’ to see the organized results output.
The class is flexible enough to accomodate a spatial lag model that,
besides the spatial lag of the dependent variable, includes other
non-spatial endogenous regressors. As an example, we will add the endogenous
variable RD90 (resource deprivation) and we decide to instrument for it with
FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





And we can run the model again:

>>> model = GM_Lag_Regimes(y, x, regimes, yend=yd, q=q, w=w, regime_lag_sep=False, regime_err_sep=False, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT', name_w='NAT.shp')
>>> model.betas
array([[ 3.42195202],
       [ 1.03311878],
       [ 0.14308741],
       [ 8.99740066],
       [ 1.91877758],
       [-0.32084816],
       [ 2.38918212],
       [ 3.67243761],
       [ 0.06959139]])





Once the model is run, we can obtain the standard error of the coefficient
estimates. Alternatively, we can have a summary of the output by typing:
model.summary

>>> model.std_err
array([ 0.49163311,  0.12237382,  0.05633464,  0.72555909,  0.17250521,
        0.06749131,  0.27370369,  0.25106224,  0.05804213])






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	kstarinteger
	Number of endogenous variables. 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	robuststring
	Adjustment for robust standard errors
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	utufloat
	Sum of squared residuals



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	ak_testtuple
	Anselin-Kelejian test; tuple contains the pair (statistic,
p-value)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_gwkstring
	Name of kernel weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2nfloat
	Sigma squared (computed with n in the denominator)



	sig2n_kfloat
	Sigma squared (computed with n-k in the denominator)



	hthfloat
	\(H'H\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	hthifloat
	\((H'H)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	varbarray
	\((Z'H (H'H)^{-1} H'Z)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zthhthiarray
	\(Z'H(H'H)^{-1}\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pfora1a2array
	n(zthhthi)’varb
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime.






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression









Methods







	GM_Lag_Regimes_Multi

	


	sp_att_reg

	






	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	GM_Lag_Regimes_Multi(self, y, x, w_i, w, …)

	



	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.



	sp_att_reg(self, w_i, regi_ids, wy)

	






Attributes







	mean_y

	



	pfora1a2

	



	sig2n

	



	sig2n_k

	



	std_y

	



	utu

	



	vm
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class spreg.GM_Error_Regimes(y, x, regimes, w, vm=False, name_y=None, name_x=None, name_w=None, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with regimes, with results and diagnostics;
based on Kelejian and Prucha (1998, 1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string, optional
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Error_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(model.betas, decimals=6)
array([[ 0.074807],
       [ 0.786107],
       [ 0.538849],
       [ 5.103756],
       [ 1.196009],
       [ 0.600533],
       [ 0.364103]])
>>> np.around(model.std_err, decimals=6)
array([ 0.379864,  0.152316,  0.051942,  0.471285,  0.19867 ,  0.057252])
>>> np.around(model.z_stat, decimals=6)
array([[  0.196932,   0.843881],
       [  5.161042,   0.      ],
       [ 10.37397 ,   0.      ],
       [ 10.829455,   0.      ],
       [  6.02007 ,   0.      ],
       [ 10.489215,   0.      ]])
>>> np.around(model.sig2, decimals=6)
28.172732






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	vmarray
	Variance covariance matrix (kxk)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, w, vm=False, name_y=None, name_x=None, name_w=None, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes, w[, vm, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Error_Het_Regimes


	
class spreg.GM_Error_Het_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with heteroskedasticity and regimes;
based on Arraiz et al [ADKP10], following Anselin [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime (default)






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.



	max_iterint
	Maximum number of iterations of steps 2a and 2b from Arraiz
et al. Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from Arraiz et al. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from Arraiz et al.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial error model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT.dbf')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_x
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', 'lambda']
>>> np.around(reg.betas, decimals=6)
array([[ 0.009121],
       [ 0.812973],
       [ 0.549355],
       [ 5.00279 ],
       [ 1.200929],
       [ 0.614681],
       [ 0.429277]])
>>> np.around(reg.std_err, decimals=6)
array([ 0.355844,  0.221743,  0.059276,  0.686764,  0.35843 ,  0.092788,
        0.02524 ])






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	vmarray
	Variance covariance matrix (kxk)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes


	‘many’: a vector of ones is appended to x and considered different per regime






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, cores=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes, w[, max_iter, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Error_Hom_Regimes


	
class spreg.GM_Error_Hom_Regimes(y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial error model with homoskedasticity, with regimes, 
results and diagnostics; based on Drukker et al. (2013) [DEP13], following
Anselin (2011) [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional
stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11].  If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Error_Hom_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_ds='NAT')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. This is why you obtain as many coefficient estimates as
standard errors, which you calculate taking the square root of the
diagonal of the variance-covariance matrix of the parameters. Alternatively,
we can have a summary of the output by typing: model.summary
>>> print reg.name_x
[‘0_CONSTANT’, ‘0_PS90’, ‘0_UE90’, ‘1_CONSTANT’, ‘1_PS90’, ‘1_UE90’, ‘lambda’]

>>> print np.around(reg.betas,4)
[[ 0.069 ]
 [ 0.7885]
 [ 0.5398]
 [ 5.0948]
 [ 1.1965]
 [ 0.6018]
 [ 0.4104]]





>>> print np.sqrt(reg.vm.diagonal())
[ 0.39105854  0.15664624  0.05254328  0.48379958  0.20018799  0.05834139
  0.01882401]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	vmarray
	Variance covariance matrix (kxk)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	xtxfloat
	\(X'X\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi: string
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, w, max_iter=1, epsilon=1e-05, A1='het', cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes, w[, max_iter, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Combo_Regimes


	
class spreg.GM_Combo_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with regimes and endogenous
variables, with results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	wpysal W object
	Spatial weights object (always needed)



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default),
the spatial parameter is fixed accross regimes.



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial lag model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Combo_Regimes(y, x, regimes, w=w, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
spatial lag of the dependent variable. We can have a summary of the
output by typing: model.summary 
Alternatively, we can check the betas:

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(model.betas,4)
[[ 1.4607]
 [ 0.958 ]
 [ 0.5658]
 [ 9.113 ]
 [ 1.1338]
 [ 0.6517]
 [-0.4583]
 [ 0.6136]]





And lambda:

>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda:  [ 0.6136]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor.  We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





And then we can run and explore the model analogously to the previous combo:

>>> model = GM_Combo_Regimes(y, x, regimes, yd, q, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print model.betas
[[ 3.41963782]
 [ 1.04065841]
 [ 0.16634393]
 [ 8.86544628]
 [ 1.85120528]
 [-0.24908469]
 [ 2.43014046]
 [ 3.61645481]
 [ 0.03308671]
 [ 0.18684992]]
>>> print np.sqrt(model.vm.diagonal())
[ 0.53067577  0.13271426  0.06058025  0.76406411  0.17969783  0.07167421
  0.28943121  0.25308326  0.06126529]
>>> print 'lambda: ', np.around(model.betas[-1], 4)
lambda:  [ 0.1868]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default), 
the spatial parameter is fixed accross regimes.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.






Attributes







	mean_y

	



	std_y

	














          

      

      

    

  

  
    
    spreg.GM_Combo_Hom_Regimes
    

    

    
 
  

    
      
          
            
  
spreg.GM_Combo_Hom_Regimes


	
class spreg.GM_Combo_Hom_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with homoskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Drukker et al. (2013) [DEP13], following Anselin (2011)
[Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object (always needed)



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default), 
the spatial parameter is fixed across regimes.



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	max_iterint
	Maximum number of iterations of steps 2a and 2b from [ADKP10].
Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11].  If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.  We can have a 
summary of the output by typing: model.summary 
Alternatively, we can check the betas:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[ 1.4607]
 [ 0.9579]
 [ 0.5658]
 [ 9.1129]
 [ 1.1339]
 [ 0.6517]
 [-0.4583]
 [ 0.6634]]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor.  We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Hom_Regimes(y, x, regimes, yd, q, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[ 3.4196478 ]
 [ 1.04065595]
 [ 0.16630304]
 [ 8.86570777]
 [ 1.85134286]
 [-0.24921597]
 [ 2.43007651]
 [ 3.61656899]
 [ 0.03315061]
 [ 0.22636055]]
>>> print np.sqrt(reg.vm.diagonal())
[ 0.53989913  0.13506086  0.06143434  0.77049956  0.18089997  0.07246848
  0.29218837  0.25378655  0.06184801  0.06323236]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda:  [ 0.2264]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Sigma squared used in computations (based on filtered
residuals)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default), 
the spatial parameter is fixed across regimes.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, cores=False, max_iter=1, epsilon=1e-05, A1='het', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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class spreg.GM_Combo_Het_Regimes(y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	GMM method for a spatial lag and error model with heteroskedasticity,
regimes and endogenous variables, with results and diagnostics;
based on Arraiz et al [ADKP10], following Anselin [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object (always needed)



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	regime_lag_sepboolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default), 
the spatial parameter is fixed across regimes.



	w_lagsinteger
	Orders of W to include as instruments for the spatially
lagged dependent variable. For example, w_lags=1, then
instruments are WX; if w_lags=2, then WX, WWX; and so on.



	lag_qboolean
	If True, then include spatial lags of the additional 
instruments (q).



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from [ADKP10].



	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial combo model, we need to specify
the spatial weights matrix that includes the spatial configuration of the
observations. To do that, we can open an already existing gal file or 
create a new one. In this case, we will create one from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

Example only with spatial lag

The Combo class runs an SARAR model, that is a spatial lag+error model.
In this case we will run a simple version of that, where we have the
spatial effects as well as exogenous variables. Since it is a spatial
model, we have to pass in the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.  We can have a 
summary of the output by typing: model.summary 
Alternatively, we can check the betas:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '_Global_W_HR90', 'lambda']
>>> print np.around(reg.betas,4)
[[ 1.4613]
 [ 0.9587]
 [ 0.5658]
 [ 9.1157]
 [ 1.1324]
 [ 0.6518]
 [-0.4587]
 [ 0.7174]]





This class also allows the user to run a spatial lag+error model with the
extra feature of including non-spatial endogenous regressors. This means
that, in addition to the spatial lag and error, we consider some of the
variables on the right-hand side of the equation as endogenous and we
instrument for this. In this case we consider RD90 (resource deprivation)
as an endogenous regressor.  We use FP89 (families below poverty)
for this and hence put it in the instruments parameter, ‘q’.

>>> yd_var = ['RD90']
>>> yd = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





And then we can run and explore the model analogously to the previous combo:

>>> reg = GM_Combo_Het_Regimes(y, x, regimes, yd, q, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT')
>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', '_Global_W_HR90', 'lambda']
>>> print reg.betas
[[ 3.41936197]
 [ 1.04071048]
 [ 0.16747219]
 [ 8.85820215]
 [ 1.847382  ]
 [-0.24545394]
 [ 2.43189808]
 [ 3.61328423]
 [ 0.03132164]
 [ 0.29544224]]
>>> print np.sqrt(reg.vm.diagonal())
[ 0.53103804  0.20835827  0.05755679  1.00496234  0.34332131  0.10259525
  0.3454436   0.37932794  0.07611667  0.07067059]
>>> print 'lambda: ', np.around(reg.betas[-1], 4)
lambda:  [ 0.2954]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	e_predarray
	nx1 array of residuals (using reduced form)



	predyarray
	nx1 array of predicted y values



	predy_earray
	nx1 array of predicted y values (using reduced form)



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	pr2_efloat
	Pseudo R squared (squared correlation between y and ypred_e
(using reduced form))
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	If True, the spatial parameter for spatial lag is also
computed according to different regimes. If False (default), 
the spatial parameter is fixed across regimes.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, max_iter=1, epsilon=1e-05, step1c=False, cores=False, inv_method='power_exp', constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, regimes[, yend, q, w, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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class spreg.GM_Endog_Error_Regimes(y, x, yend, q, regimes, w, cores=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with regimes and endogenous variables, with
results and diagnostics; based on Kelejian and Prucha (1998,
1999) [KP98] [KP99].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	regime_lag_sep: boolean
	Always False, kept for consistency, ignored.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import libpysal
>>> import numpy as np





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already 
existing gal file or create a new one. In this case, we will create one 
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> model = GM_Endog_Error_Regimes(y, x, yend, q, regimes, w=w, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. Note that because we are running the classical GMM error
model from 1998/99, the spatial parameter is obtained as a point estimate, so
although you get a value for it (there are for coefficients under
model.betas), you cannot perform inference on it (there are only three
values in model.se_betas). Also, this regression uses a two stage least
squares estimation method that accounts for the endogeneity created by the
endogenous variables included. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print model.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']
>>> np.around(model.betas, decimals=5)
array([[ 3.59718],
       [ 1.0652 ],
       [ 0.15822],
       [ 9.19754],
       [ 1.88082],
       [-0.24878],
       [ 2.46161],
       [ 3.57943],
       [ 0.25564]])
>>> np.around(model.std_err, decimals=6)
array([ 0.522633,  0.137555,  0.063054,  0.473654,  0.18335 ,  0.072786,
        0.300711,  0.240413])






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)
Sigma squared used in computations



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi[‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sep: boolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, yend, q, regimes, w, cores=False, vm=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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class spreg.GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, max_iter=1, epsilon=1e-05, A1='het', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with homoskedasticity, regimes and
endogenous variables.
Based on Drukker et al. (2013) [DEP13], following Anselin (2011)
[Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	regime_lag_sepboolean
	Always False, kept for consistency, ignored.



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	A1string
	If A1=’het’, then the matrix A1 is defined as in
[ADKP10]. If A1=’hom’, then as in [Ans11].  If
A1=’hom_sc’, then as in [DEP13]
and [DPR13].



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already 
existing gal file or create a new one. In this case, we will create one 
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Hom_Regimes(y, x, yend, q, regimes, w=w, A1='hom_sc', name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that assumes
homoskedasticity but that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix. Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']





>>> print np.around(reg.betas,4)
[[ 3.5973]
 [ 1.0652]
 [ 0.1582]
 [ 9.198 ]
 [ 1.8809]
 [-0.2489]
 [ 2.4616]
 [ 3.5796]
 [ 0.2541]]





>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5204  0.1371  0.0629  0.4721  0.1824  0.0725  0.2992  0.2395  0.024 ]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	sig2float
	Sigma squared used in computations
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	hthfloat
	\(H'H\).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_regi[‘one’, ‘many’]
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, yend, q, regimes, w, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, max_iter=1, epsilon=1e-05, A1='het', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.GM_Endog_Error_Het_Regimes


	
class spreg.GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	GMM method for a spatial error model with heteroskedasticity, regimes and
endogenous variables, with results and diagnostics; based on Arraiz et al
[ADKP10], following Anselin [Ans11].


	Parameters

	
	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, excluding the constant



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable to use as instruments (note: 
this should not contain any variables from x)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	wpysal W object
	Spatial weights object



	constant_regi: string
	Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’ (default), all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	regime_lag_sepboolean
	Always False, kept for consistency, ignored.



	max_iterint
	Maximum number of iterations of steps 2a and 2b from
[ADKP10]. Note: epsilon provides an additional stop condition.



	epsilonfloat
	Minimum change in lambda required to stop iterations of
steps 2a and 2b from [ADKP10]. Note: max_iter provides
an additional stop condition.



	step1cboolean
	If True, then include Step 1c from [ADKP10].



	inv_methodstring
	If “power_exp”, then compute inverse using the power
expansion. If “true_inv”, then compute the true inverse.
Note that true_inv will fail for large n.



	vmboolean
	If True, include variance-covariance matrix in summary
results



	coresboolean
	Specifies if multiprocessing is to be used
Default: no multiprocessing, cores = False
Note: Multiprocessing may not work on all platforms.



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_qlist of strings
	Names of instruments for use in output



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regime variable for use in the output









Examples

We first need to import the needed modules, namely numpy to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis.

>>> import numpy as np
>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





Extract the HR90 column (homicide rates in 1990) from the DBF file and make it the
dependent variable for the regression. Note that PySAL requires this to be
an numpy array of shape (n, 1) as opposed to the also common shape of (n, )
that other packages accept.

>>> y_var = 'HR90'
>>> y = np.array([db.by_col(y_var)]).reshape(3085,1)





Extract UE90 (unemployment rate) and PS90 (population structure) vectors from
the DBF to be used as independent variables in the regression. Other variables
can be inserted by adding their names to x_var, such as x_var = [‘Var1’,’Var2’,’…]
Note that PySAL requires this to be an nxj numpy array, where j is the
number of independent variables (not including a constant). By default
this model adds a vector of ones to the independent variables passed in.

>>> x_var = ['PS90','UE90']
>>> x = np.array([db.by_col(name) for name in x_var]).T





For the endogenous models, we add the endogenous variable RD90 (resource deprivation)
and we decide to instrument for it with FP89 (families below poverty):

>>> yd_var = ['RD90']
>>> yend = np.array([db.by_col(name) for name in yd_var]).T
>>> q_var = ['FP89']
>>> q = np.array([db.by_col(name) for name in q_var]).T





The different regimes in this data are given according to the North and 
South dummy (SOUTH).

>>> r_var = 'SOUTH'
>>> regimes = db.by_col(r_var)





Since we want to run a spatial error model, we need to specify the spatial
weights matrix that includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already 
existing gal file or create a new one. In this case, we will create one 
from NAT.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("NAT.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are all set with the preliminaries, we are good to run the model. In this
case, we will need the variables (exogenous and endogenous), the
instruments and the weights matrix. If we want to
have the names of the variables printed in the output summary, we will
have to pass them in as well, although this is optional.

>>> reg = GM_Endog_Error_Het_Regimes(y, x, yend, q, regimes, w=w, step1c=True, name_y=y_var, name_x=x_var, name_yend=yd_var, name_q=q_var, name_regimes=r_var, name_ds='NAT.dbf')





Once we have run the model, we can explore a little bit the output. The
regression object we have created has many attributes so take your time to
discover them. This class offers an error model that explicitly accounts
for heteroskedasticity and that unlike the models from
spreg.error_sp, it allows for inference on the spatial
parameter. Hence, we find the same number of betas as of standard errors,
which we calculate taking the square root of the diagonal of the
variance-covariance matrix Alternatively, we can have a summary of the
output by typing: model.summary

>>> print reg.name_z
['0_CONSTANT', '0_PS90', '0_UE90', '1_CONSTANT', '1_PS90', '1_UE90', '0_RD90', '1_RD90', 'lambda']





>>> print np.around(reg.betas,4)
[[ 3.5944]
 [ 1.065 ]
 [ 0.1587]
 [ 9.184 ]
 [ 1.8784]
 [-0.2466]
 [ 2.4617]
 [ 3.5756]
 [ 0.2908]]





>>> print np.around(np.sqrt(reg.vm.diagonal()),4)
[ 0.5043  0.2132  0.0581  0.6681  0.3504  0.0999  0.3686  0.3402  0.028 ]






	Attributes

	
	summarystring
	Summary of regression results and diagnostics (note: use in
conjunction with the print command)



	betasarray
	kx1 array of estimated coefficients



	uarray
	nx1 array of residuals



	e_filteredarray
	nx1 array of spatially filtered residuals



	predyarray
	nx1 array of predicted y values



	ninteger
	Number of observations



	kinteger
	Number of variables for which coefficients are estimated
(including the constant).
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yarray
	nx1 array for dependent variable



	xarray
	Two dimensional array with n rows and one column for each
independent (exogenous) variable, including the constant
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	yendarray
	Two dimensional array with n rows and one column for each
endogenous variable
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	qarray
	Two dimensional array with n rows and one column for each
external exogenous variable used as instruments 
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	zarray
	nxk array of variables (combination of x and yend)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	harray
	nxl array of instruments (combination of x and q)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iter_stopstring
	Stop criterion reached during iteration of steps 2a and 2b
from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	iterationinteger
	Number of iterations of steps 2a and 2b from [ADKP10].
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	mean_yfloat
	Mean of dependent variable



	std_yfloat
	Standard deviation of dependent variable



	vmarray
	Variance covariance matrix (kxk)



	pr2float
	Pseudo R squared (squared correlation between y and ypred)
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	std_errarray
	1xk array of standard errors of the betas    
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	z_statlist of tuples
	z statistic; each tuple contains the pair (statistic,
p-value), where each is a float
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	name_ystring
	Name of dependent variable for use in output



	name_xlist of strings
	Names of independent variables for use in output



	name_yendlist of strings
	Names of endogenous variables for use in output



	name_zlist of strings
	Names of exogenous and endogenous variables for use in 
output



	name_qlist of strings
	Names of external instruments



	name_hlist of strings
	Names of all instruments used in ouput



	name_wstring
	Name of weights matrix for use in output



	name_dsstring
	Name of dataset for use in output



	name_regimesstring
	Name of regimes variable for use in output



	titlestring
	Name of the regression method used
Only available in dictionary ‘multi’ when multiple regressions
(see ‘multi’ below for details)



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	constant_registring
	Ignored if regimes=False. Constant option for regimes.
Switcher controlling the constant term setup. It may take
the following values:


	‘one’: a vector of ones is appended to x and held constant across regimes.


	‘many’: a vector of ones is appended to x and considered different per regime (default).






	cols2regilist, ‘all’
	Ignored if regimes=False. Argument indicating whether each
column of x should be considered as different per regime
or held constant across regimes (False).
If a list, k booleans indicating for each variable the
option (True if one per regime, False to be held constant).
If ‘all’, all the variables vary by regime.



	regime_err_sepboolean
	If True, a separate regression is run for each regime.



	krint
	Number of variables/columns to be “regimized” or subject
to change by regime. These will result in one parameter
estimate by regime for each variable (i.e. nr parameters per
variable)



	kfint
	Number of variables/columns to be considered fixed or
global across regimes and hence only obtain one parameter
estimate



	nrint
	Number of different regimes in the ‘regimes’ list



	multidictionary
	Only available when multiple regressions are estimated,
i.e. when regime_err_sep=True and no variable is fixed
across regimes.
Contains all attributes of each individual regression










	
__init__(self, y, x, yend, q, regimes, w, max_iter=1, epsilon=1e-05, step1c=False, constant_regi='many', cols2regi='all', regime_err_sep=False, regime_lag_sep=False, inv_method='power_exp', cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_w=None, name_ds=None, name_regimes=None, summ=True, add_lag=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, y, x, yend, q, regimes, w[, …])

	Initialize self.






Attributes







	mean_y

	



	std_y
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spreg.SUR


	
class spreg.SUR(bigy, bigX, w=None, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, iter=False, maxiter=5, epsilon=1e-05, verbose=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR estimation, both two step as well as iterated


	Parameters

	
	bigydictionary
	with vector for dependent variable by equation



	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)



	wspatial weights object
	default = None



	regimeslist
	default = None.
List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True



	spat_diagboolean
	flag for spatial diagnostics, default = False



	iterboolean
	whether or not to use iterated estimation.
default = False



	maxiterint
	maximum iterations; default = 5



	epsilonfloat
	precision criterion to end iterations.
default = 0.00001



	verboseboolean
	flag to print out iteration number and value
of log det(sig) at the beginning and the end of the iteration



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified
is done when sur_stackxy is used



	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified
is done when sur_stackxy is used



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output









Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable and PS80 and UE80 as exogenous regressors.
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]





Although not required for this method, we can load a weights matrix file
to allow for spatial diagnostics.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'





The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)





We can now run the regression and then have a summary of the output by typing:
‘print(reg.summary)’

>>> reg = SUR(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,spat_diag=True,name_ds="nat")
>>> print(reg.summary)
REGRESSION
----------
SUMMARY OF OUTPUT: SEEMINGLY UNRELATED REGRESSIONS (SUR)
--------------------------------------------------------
Data set            :         nat
Weights matrix      :     unknown
Number of Equations :           2                Number of Observations:        3085
Log likelihood (SUR):  -19902.966                Number of Iterations  :           1
----------

SUMMARY OF EQUATION 1
---------------------
Dependent Variable  :        HR80                Number of Variables   :           3
Mean dependent var  :      6.9276                Degrees of Freedom    :        3082
S.D. dependent var  :      6.8251

------------------------------------------------------------------------------------
            Variable     Coefficient       Std.Error     z-Statistic     Probability
------------------------------------------------------------------------------------
          Constant_1       5.1390718       0.2624673      19.5798587       0.0000000
                PS80       0.6776481       0.1219578       5.5564132       0.0000000
                UE80       0.2637240       0.0343184       7.6846277       0.0000000
------------------------------------------------------------------------------------

SUMMARY OF EQUATION 2
---------------------
Dependent Variable  :        HR90                Number of Variables   :           3
Mean dependent var  :      6.1829                Degrees of Freedom    :        3082
S.D. dependent var  :      6.6403

------------------------------------------------------------------------------------
            Variable     Coefficient       Std.Error     z-Statistic     Probability
------------------------------------------------------------------------------------
          Constant_2       3.6139403       0.2534996      14.2561949       0.0000000
                PS90       1.0260715       0.1121662       9.1477755       0.0000000
                UE90       0.3865499       0.0341996      11.3027760       0.0000000
------------------------------------------------------------------------------------


REGRESSION DIAGNOSTICS
                                     TEST         DF       VALUE           PROB
                         LM test on Sigma         1      680.168           0.0000
                         LR test on Sigma         1      768.385           0.0000

OTHER DIAGNOSTICS - CHOW TEST BETWEEN EQUATIONS
                                VARIABLES         DF       VALUE           PROB
                   Constant_1, Constant_2         1       26.729           0.0000
                               PS80, PS90         1        8.241           0.0041
                               UE80, UE90         1        9.384           0.0022

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                              DF       VALUE           PROB
Lagrange Multiplier (error)       2        1333.586        0.0000
Lagrange Multiplier (lag)         2        1275.821        0.0000

ERROR CORRELATION MATRIX
  EQUATION 1  EQUATION 2
    1.000000    0.469548
    0.469548    1.000000
================================ END OF REPORT =====================================






	Attributes

	
	bigydictionary
	with y values



	bigXdictionary
	with X values



	bigXXdictionary
	with \(X_t'X_r\) cross-products



	bigXydictionary
	with \(X_t'y_r\) cross-products



	n_eqint
	number of equations



	nint
	number of observations in each cross-section



	bigKarray
	vector with number of explanatory variables (including constant)
for each equation



	bOLSdictionary
	with OLS regression coefficients for each equation



	olsEarray
	N x n_eq array with OLS residuals for each equation



	bSURdictionary
	with SUR regression coefficients for each equation



	varbarray
	variance-covariance matrix



	bigEarray
	n by n_eq array of residuals



	sig_olsarray
	Sigma matrix for OLS residuals (diagonal)



	ldetS0float
	log det(Sigma) for null model (OLS by equation)



	niterint
	number of iterations (=0 for iter=False)



	corrarray
	inter-equation error correlation matrix



	llikfloat
	log-likelihood (including the constant pi)



	sur_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation



	lrtesttuple
	Likelihood Ratio test on off-diagonal elements of sigma
(tuple with test,df,p-value)



	lmtesttuple
	Lagrange Multipler test on off-diagonal elements of sigma
(tuple with test,df,p-value)



	lmEtesttuple
	Lagrange Multiplier test on error spatial autocorrelation in SUR
(tuple with test, df, p-value)



	lmlagtesttuple
	Lagrange Multiplier test on spatial lag autocorrelation in SUR
(tuple with test, df, p-value)



	surchowarray
	list with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output










	
__init__(self, bigy, bigX, w=None, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, iter=False, maxiter=5, epsilon=1e-05, verbose=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX[, w, regimes, …])

	Initialize self.














          

      

      

    

  

  
    
    spreg.SURerrorGM
    

    

    
 
  

    
      
          
            
  
spreg.SURerrorGM


	
class spreg.SURerrorGM(bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR Error estimation by Maximum Likelihood


	Parameters

	
	bigydictionary
	with vectors of dependent variable, one for
each equation



	bigXdictionary
	with matrices of explanatory variables,
one for each equation



	wspatial weights object
	

	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	nonspat_diagboolean
	flag for non-spatial diagnostics, default = False



	spat_diagboolean
	flag for spatial diagnostics, default = False (to be implemented)



	vmboolean
	flag for asymptotic variance for lambda and Sigma,
default = False (to be implemented)



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified is done when
sur_stackxy is used



	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified is done when
sur_stackxy is used



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output









Examples

First import pysal to load the spatial analysis tools.

>>> import pysal





Open data on NCOVR US County Homicides (3085 areas) using pysal.open(). 
This is the DBF associated with the NAT shapefile. Note that pysal.open() 
also reads data in CSV format.

>>> db = pysal.open(pysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Equation 1 has HR80 as dependent 
variable, and PS80 and UE80 as exogenous regressors. 
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]





The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)





To run a spatial error model, we need to specify the spatial weights matrix. 
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = pysal.queen_from_shapefile(pysal.examples.get_path("NAT.shp"))
>>> w.transform='r'





We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t 
and p-value of the parameters:

>>> reg = SURerrorGM(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds="NAT",name_w="nat_queen")
>>> reg.bSUR
{0: array([[ 3.9774686 ],
       [ 0.8902122 ],
       [ 0.43050364]]), 1: array([[ 2.93679118],
       [ 1.11002827],
       [ 0.48761542]])}
>>> reg.sur_inf
{0: array([[  0.37251477,  10.67734473,   0.        ],
       [  0.14224297,   6.25839157,   0.        ],
       [  0.04322388,   9.95985619,   0.        ]]), 1: array([[  0.33694902,   8.71583239,   0.        ],
       [  0.13413626,   8.27537784,   0.        ],
       [  0.04033105,  12.09032295,   0.        ]])}






	Attributes

	
	nint
	number of observations in each cross-section



	n_eqint
	number of equations



	bigydictionary
	with vectors of dependent variable, one for
each equation



	bigXdictionary
	with matrices of explanatory variables,
one for each equation



	bigKarray
	n_eq x 1 array with number of explanatory variables
by equation



	bigylagdictionary
	spatially lagged dependent variable



	bigXlagdictionary
	spatially lagged explanatory variable



	lamsurfloat
	spatial autoregressive coefficient in ML SUR Error



	bSURarray
	beta coefficients in ML SUR Error



	varbarray
	variance of beta coefficients in ML SUR Error



	sigarray
	error variance-covariance matrix in ML SUR Error



	bigEarray
	n by n_eq matrix of vectors of residuals for each equation



	sur_infarray
	inference for regression coefficients, stand. error, t, p



	surchowarray
	list with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output










	
__init__(self, bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX, w[, regimes, …])

	Initialize self.














          

      

      

    

  

  
    
    spreg.SURerrorML
    

    

    
 
  

    
      
          
            
  
spreg.SURerrorML


	
class spreg.SURerrorML(bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, epsilon=1e-07, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	User class for SUR Error estimation by Maximum Likelihood


	Parameters

	
	bigydictionary
	with vectors of dependent variable, one for
each equation



	bigXdictionary
	with matrices of explanatory variables,
one for each equation



	wspatial weights object
	

	regimeslist
	default = None.
List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	epsilonfloat
	convergence criterion for ML iterations.
default 0.0000001



	nonspat_diagboolean
	flag for non-spatial diagnostics, default = True



	spat_diagboolean
	flag for spatial diagnostics, default = False



	vmboolean
	flag for asymptotic variance for lambda and Sigma,
default = False



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified is done when
sur_stackxy is used



	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified is done when
sur_stackxy is used



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output









Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open(). 
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open() 
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Equation 1 has HR80 as dependent 
variable, and PS80 and UE80 as exogenous regressors. 
For equation 2, HR90 is the dependent variable, and PS90 and UE90 the
exogenous regressors.

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]





The SUR method requires data to be provided as dictionaries. PySAL
provides the tool sur_dictxy to create these dictionaries from the
list of variables. The line below will create four dictionaries
containing respectively the dependent variables (bigy), the regressors
(bigX), the dependent variables’ names (bigyvars) and regressors’ names
(bigXvars). All these will be created from th database (db) and lists
of variables (y_var and x_var) created above.

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)





To run a spatial error model, we need to specify the spatial weights matrix. 
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'





We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t 
and p-value of the parameters:

>>> reg = SURerrorML(bigy,bigX,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_ds="NAT",name_w="nat_queen")
>>> reg.bSUR
{0: array([[ 4.0222855 ],
       [ 0.88489646],
       [ 0.42402853]]), 1: array([[ 3.04923009],
       [ 1.10972634],
       [ 0.47075682]])}





>>> reg.sur_inf
{0: array([[  0.36692181,  10.96224141,   0.        ],
       [  0.14129077,   6.26294579,   0.        ],
       [  0.04267954,   9.93517021,   0.        ]]), 1: array([[  0.33139969,   9.20106497,   0.        ],
       [  0.13352591,   8.31094371,   0.        ],
       [  0.04004097,  11.756878  ,   0.        ]])}






	Attributes

	
	nint
	number of observations in each cross-section



	n2int
	n/2



	n_eqint
	number of equations



	bigydictionary
	with vectors of dependent variable, one for
each equation



	bigXdictionary
	with matrices of explanatory variables,
one for each equation



	bigKarray
	n_eq x 1 array with number of explanatory variables
by equation



	bigylagdictionary
	spatially lagged dependent variable



	bigXlagdictionary
	spatially lagged explanatory variable



	lamolsarray
	spatial autoregressive coefficients from equation by
equation ML-Error estimation



	clikerrfloat
	concentrated log-likelihood from equation by equation
ML-Error estimation (no constant)



	bSUR0array
	SUR estimation for betas without spatial autocorrelation



	llikfloat
	log-likelihood for classic SUR estimation (includes constant)



	lamsurfloat
	spatial autoregressive coefficient in ML SUR Error



	bSURarray
	beta coefficients in ML SUR Error



	varbarray
	variance of beta coefficients in ML SUR Error



	sigarray
	error variance-covariance matrix in ML SUR Error



	bigEarray
	n by n_eq matrix of vectors of residuals for each equation



	cliksurerrfloat
	concentrated log-likelihood from ML SUR Error (no constant)



	sur_infarray
	inference for regression coefficients, stand. error, t, p



	errllikfloat
	log-likelihood for error model without SUR (with constant)



	surerrllikfloat
	log-likelihood for SUR error model (with constant)



	lrtesttuple
	likelihood ratio test for off-diagonal Sigma elements



	likrlambdatuple
	likelihood ratio test on spatial autoregressive coefficients



	vmarray
	asymptotic variance matrix for lambda and Sigma (only for vm=True)



	lamsetparray
	inference for lambda, stand. error, t, p (only for vm=True)



	lamtesttuple
	with test for constancy of lambda across equations
(test value, degrees of freedom, p-value)



	joinlamtuple
	with test for joint significance of lambda across
equations (test value, degrees of freedom, p-value)



	surchowlist
	with tuples for Chow test on regression coefficients.
each tuple contains test value, degrees of freedom, p-value



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_dsstring
	name for the data set



	name_wstring
	name for the weights file



	name_regimesstring
	name of regime variable for use in the output










	
__init__(self, bigy, bigX, w, regimes=None, nonspat_diag=True, spat_diag=False, vm=False, epsilon=1e-07, name_bigy=None, name_bigX=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX, w[, regimes, …])

	Initialize self.














          

      

      

    

  

  
    
    spreg.SURlagIV
    

    

    
 
  

    
      
          
            
  
spreg.SURlagIV


	
class spreg.SURlagIV(bigy, bigX, bigyend=None, bigq=None, w=None, regimes=None, vm=False, regime_lag_sep=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None, name_regimes=None)

	User class for spatial lag estimation using IV


	Parameters

	
	bigydictionary
	with vector for dependent variable by equation



	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)



	bigyenddictionary
	with matrix of endogenous variables by equation
(optional)



	bigqdictionary
	with matrix of instruments by equation
(optional)



	wspatial weights object, required
	

	vmboolean
	listing of full variance-covariance matrix, default = False



	w_lagsinteger
	order of spatial lags for WX instruments, default = 1



	lag_qboolean
	flag to apply spatial lag to other instruments,
default = True



	nonspat_diagboolean
	flag for non-spatial diagnostics, default = True



	spat_diagboolean
	flag for spatial diagnostics, default = False



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used.



	name_bigXdictionary
	with names of explanatory variables for each
equation.
default = None, but should be specified.
is done when sur_stackxy is used.



	name_bigyenddictionary
	with names of endogenous variables for each
equation.
default = None, but should be specified.
is done when sur_stackZ is used.



	name_bigqdictionary
	with names of instrumental variables for each
equations.
default = None, but should be specified.
is done when sur_stackZ is used.



	name_dsstring
	name for the data set



	name_wstring
	name for the spatial weights









Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. Although not required,
in this example we will specify additional endogenous regressors.
Equation 1 has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]





The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)





To run a spatial lag model, we need to specify the spatial weights matrix.
To do that, we can open an already existing gal file or create a new one.
In this example, we will create a new one from NAT.shp and transform it to
row-standardized.

>>> w = libpysal.weights.Queen.from_shapefile(libpysal.examples.get_path("NAT.shp"))
>>> w.transform='r'





We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = SURlagIV(bigy,bigX,bigyend,bigq,w=w,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT",name_w="nat_queen")
>>> reg.b3SLS
{0: array([[ 6.95472387],
       [ 1.44044301],
       [-0.00771893],
       [ 3.65051153],
       [ 0.00362663]]), 1: array([[ 5.61101925],
       [ 1.38716801],
       [-0.15512029],
       [ 3.1884457 ],
       [ 0.25832185]])}





>>> reg.tsls_inf
{0: array([[  0.49128435,  14.15620899,   0.        ],
       [  0.11516292,  12.50787151,   0.        ],
       [  0.03204088,  -0.2409087 ,   0.80962588],
       [  0.1876025 ,  19.45875745,   0.        ],
       [  0.05450628,   0.06653605,   0.94695106]]), 1: array([[  0.44969956,  12.47726211,   0.        ],
       [  0.10440241,  13.28674277,   0.        ],
       [  0.04150243,  -3.73761961,   0.00018577],
       [  0.19133145,  16.66451427,   0.        ],
       [  0.04394024,   5.87893596,   0.        ]])}






	Attributes

	
	wspatial weights object
	

	bigydictionary
	with y values



	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation



	bigyenddictionary
	with matrix of endogenous variables for each
equation; contains Wy only if no other endogenous specified



	bigqdictionary
	with matrix of instrumental variables for each
equation; contains WX only if no other endogenous specified



	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s



	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s



	n_eqint
	number of equations



	nint
	number of observations in each cross-section



	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation



	b2SLSdictionary
	with 2SLS regression coefficients for each equation



	tslsEarray
	N x n_eq array with OLS residuals for each equation



	b3SLSdictionary
	with 3SLS regression coefficients for each equation



	varbarray
	variance-covariance matrix



	sigarray
	Sigma matrix of inter-equation error covariances



	residsarray
	n by n_eq array of residuals



	corrarray
	inter-equation 3SLS error correlation matrix



	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation



	joinrhotuple
	test on joint significance of spatial autoregressive coefficient.
tuple with test statistic, degrees of freedom, p-value



	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value



	name_wstring
	name for the spatial weights



	name_dsstring
	name for the data set



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_bigyenddictionary
	with names of endogenous variables for each
equation



	name_bigqdictionary
	with names of instrumental variables for each
equations










	
__init__(self, bigy, bigX, bigyend=None, bigq=None, w=None, regimes=None, vm=False, regime_lag_sep=False, w_lags=1, lag_q=True, nonspat_diag=True, spat_diag=False, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_w=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX[, bigyend, bigq, …])

	Initialize self.














          

      

      

    

  

  
    
    spreg.ThreeSLS
    

    

    
 
  

    
      
          
            
  
spreg.ThreeSLS


	
class spreg.ThreeSLS(bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	User class for 3SLS estimation


	Parameters

	
	bigydictionary
	with vector for dependent variable by equation



	bigXdictionary
	with matrix of explanatory variables by equation
(note, already includes constant term)



	bigyenddictionary
	with matrix of endogenous variables by equation



	bigqdictionary
	with matrix of instruments by equation



	regimeslist
	List of n values with the mapping of each
observation to a regime. Assumed to be aligned with ‘x’.



	nonspat_diag: boolean
	flag for non-spatial diagnostics, default = True.



	name_bigydictionary
	with name of dependent variable for each equation.
default = None, but should be specified.
is done when sur_stackxy is used



	name_bigXdictionary
	with names of explanatory variables for each equation.
default = None, but should be specified.
is done when sur_stackxy is used



	name_bigyenddictionary
	with names of endogenous variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used



	name_bigqdictionary
	with names of instrumental variables for each equation.
default = None, but should be specified.
is done when sur_stackZ is used.



	name_dsstring
	name for the data set.



	name_regimesstring
	name of regime variable for use in the output.









Examples

First import libpysal to load the spatial analysis tools.

>>> import libpysal





Open data on NCOVR US County Homicides (3085 areas) using libpysal.io.open().
This is the DBF associated with the NAT shapefile. Note that libpysal.io.open()
also reads data in CSV format.

>>> db = libpysal.io.open(libpysal.examples.get_path("NAT.dbf"),'r')





The specification of the model to be estimated can be provided as lists.
Each equation should be listed separately. In this example, equation 1
has HR80 as dependent variable, PS80 and UE80 as exogenous regressors,
RD80 as endogenous regressor and FP79 as additional instrument.
For equation 2, HR90 is the dependent variable, PS90 and UE90 the
exogenous regressors, RD90 as endogenous regressor and FP99 as
additional instrument

>>> y_var = ['HR80','HR90']
>>> x_var = [['PS80','UE80'],['PS90','UE90']]
>>> yend_var = [['RD80'],['RD90']]
>>> q_var = [['FP79'],['FP89']]





The SUR method requires data to be provided as dictionaries. PySAL
provides two tools to create these dictionaries from the list of variables:
sur_dictxy and sur_dictZ. The tool sur_dictxy can be used to create the
dictionaries for Y and X, and sur_dictZ for endogenous variables (yend) and
additional instruments (q).

>>> bigy,bigX,bigyvars,bigXvars = pysal.spreg.sur_utils.sur_dictxy(db,y_var,x_var)
>>> bigyend,bigyendvars = pysal.spreg.sur_utils.sur_dictZ(db,yend_var)
>>> bigq,bigqvars = pysal.spreg.sur_utils.sur_dictZ(db,q_var)





We can now run the regression and then have a summary of the output by typing:
print(reg.summary)

Alternatively, we can just check the betas and standard errors, asymptotic t
and p-value of the parameters:

>>> reg = ThreeSLS(bigy,bigX,bigyend,bigq,name_bigy=bigyvars,name_bigX=bigXvars,name_bigyend=bigyendvars,name_bigq=bigqvars,name_ds="NAT")
>>> reg.b3SLS
{0: array([[ 6.92426353],
       [ 1.42921826],
       [ 0.00049435],
       [ 3.5829275 ]]), 1: array([[ 7.62385875],
       [ 1.65031181],
       [-0.21682974],
       [ 3.91250428]])}





>>> reg.tsls_inf
{0: array([[  0.23220853,  29.81916157,   0.        ],
       [  0.10373417,  13.77770036,   0.        ],
       [  0.03086193,   0.01601807,   0.98721998],
       [  0.11131999,  32.18584124,   0.        ]]), 1: array([[  0.28739415,  26.52753638,   0.        ],
       [  0.09597031,  17.19606554,   0.        ],
       [  0.04089547,  -5.30204786,   0.00000011],
       [  0.13586789,  28.79638723,   0.        ]])}






	Attributes

	
	bigydictionary
	with y values



	bigZdictionary
	with matrix of exogenous and endogenous variables
for each equation



	bigZHZHdictionary
	with matrix of cross products Zhat_r’Zhat_s



	bigZHydictionary
	with matrix of cross products Zhat_r’y_end_s



	n_eqint
	number of equations



	nint
	number of observations in each cross-section



	bigKarray
	vector with number of explanatory variables (including constant,
exogenous and endogenous) for each equation



	b2SLSdictionary
	with 2SLS regression coefficients for each equation



	tslsEarray
	N x n_eq array with OLS residuals for each equation



	b3SLSdictionary
	with 3SLS regression coefficients for each equation



	varbarray
	variance-covariance matrix



	sigarray
	Sigma matrix of inter-equation error covariances



	bigEarray
	n by n_eq array of residuals



	corrarray
	inter-equation 3SLS error correlation matrix



	tsls_infdictionary
	with standard error, asymptotic t and p-value,
one for each equation



	surchowarray
	list with tuples for Chow test on regression coefficients
each tuple contains test value, degrees of freedom, p-value



	name_dsstring
	name for the data set



	name_bigydictionary
	with name of dependent variable for each equation



	name_bigXdictionary
	with names of explanatory variables for each
equation



	name_bigyenddictionary
	with names of endogenous variables for each
equation



	name_bigqdictionary
	with names of instrumental variables for each
equations



	name_regimesstring
	name of regime variable for use in the output










	
__init__(self, bigy, bigX, bigyend, bigq, regimes=None, nonspat_diag=True, name_bigy=None, name_bigX=None, name_bigyend=None, name_bigq=None, name_ds=None, name_regimes=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, bigy, bigX, bigyend, bigq[, …])

	Initialize self.
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spreg.diagnostics.f_stat


	
spreg.diagnostics.f_stat(reg)

	Calculates the f-statistic and associated p-value of the
regression. [Gre03].
(For two stage least squares see f_stat_tsls)


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	fs_resulttuple
	includes value of F statistic and associated p-value









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the F-statistic for the regression.

>>> testresult = diagnostics.f_stat(reg)





Print the results tuple, including the statistic and its significance.

>>> print("%12.12f"%testresult[0],"%12.12f"%testresult[1])
('28.385629224695', '0.000000009341')
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spreg.diagnostics.t_stat


	
spreg.diagnostics.t_stat(reg, z_stat=False)

	Calculates the t-statistics (or z-statistics) and associated
p-values. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model



	z_statboolean
	If True run z-stat instead of t-stat







	Returns

	
	ts_resultlist of tuples
	each tuple includes value of t statistic (or z
statistic) and associated p-value









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.open(libpysal.examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate t-statistics for the regression coefficients.

>>> testresult = diagnostics.t_stat(reg)





Print the tuples that contain the t-statistics and their significances.

>>> print("%12.12f"%testresult[0][0], "%12.12f"%testresult[0][1], "%12.12f"%testresult[1][0], "%12.12f"%testresult[1][1], "%12.12f"%testresult[2][0], "%12.12f"%testresult[2][1])
('14.490373143689', '0.000000000000', '-4.780496191297', '0.000018289595', '-2.654408642718', '0.010874504910')
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spreg.diagnostics.r2


	
spreg.diagnostics.r2(reg)

	Calculates the R^2 value for the regression. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	r2_resultfloat
	value of the coefficient of determination for the
regression









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the R^2 value for the regression.

>>> testresult = diagnostics.r2(reg)





Print the result.

>>> print("%1.8f"%testresult)
0.55240404
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spreg.diagnostics.ar2


	
spreg.diagnostics.ar2(reg)

	Calculates the adjusted R^2 value for the regression. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	ar2_resultfloat
	value of R^2 adjusted for the number of explanatory
variables.









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the adjusted R^2 value for the regression. 
>>> testresult = diagnostics.ar2(reg)

Print the result.

>>> print("%1.8f"%testresult)
0.53294335
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spreg.diagnostics.se_betas


	
spreg.diagnostics.se_betas(reg)

	Calculates the standard error of the regression coefficients. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	se_resultarray
	includes standard errors of each coefficient (1 x k)









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the standard errors of the regression coefficients.

>>> testresult = diagnostics.se_betas(reg)





Print the vector of standard errors.

>>> testresult
array([ 4.73548613,  0.33413076,  0.10319868])
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spreg.diagnostics.log_likelihood


	
spreg.diagnostics.log_likelihood(reg)

	Calculates the log-likelihood value for the regression. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	ll_resultfloat
	value for the log-likelihood of the regression.









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the log-likelihood for the regression.

>>> testresult = diagnostics.log_likelihood(reg)





Print the result.

>>> testresult
-187.3772388121491
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spreg.diagnostics.akaike


	
spreg.diagnostics.akaike(reg)

	Calculates the Akaike Information Criterion. [Aka74]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	aic_resultscalar
	value for Akaike Information Criterion of the
regression.









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the Akaike Information Criterion (AIC).

>>> testresult = diagnostics.akaike(reg)





Print the result.

>>> testresult
380.7544776242982
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spreg.diagnostics.schwarz


	
spreg.diagnostics.schwarz(reg)

	Calculates the Schwarz Information Criterion. [S+78]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	bic_resultscalar
	value for Schwarz (Bayesian) Information Criterion of
the regression.









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the Schwarz Information Criterion.

>>> testresult = diagnostics.schwarz(reg)





Print the results.

>>> testresult
386.42993851863008
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spreg.diagnostics.condition_index


	
spreg.diagnostics.condition_index(reg)

	Calculates the multicollinearity condition index according to Belsey,
Kuh and Welsh (1980) [BKW05].


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	ci_resultfloat
	scalar value for the multicollinearity condition
index.









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the condition index to check for multicollinearity.

>>> testresult = diagnostics.condition_index(reg)





Print the result.

>>> print("%1.3f"%testresult)
6.542
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spreg.diagnostics.jarque_bera


	
spreg.diagnostics.jarque_bera(reg)

	Jarque-Bera test for normality in the residuals. [JB80]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	jb_resultdictionary
	contains the statistic (jb) for the Jarque-Bera test
and the associated p-value (p-value)



	dfinteger
	degrees of freedom for the test (always 2)



	jbfloat
	value of the test statistic



	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with 2 df)









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the Jarque-Bera test for normality of residuals.

>>> testresult = diagnostics.jarque_bera(reg)





Print the degrees of freedom for the test.

>>> testresult['df']
2





Print the test statistic.

>>> print("%1.3f"%testresult['jb'])
1.836





Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.3994
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spreg.diagnostics.breusch_pagan


	
spreg.diagnostics.breusch_pagan(reg, z=None)

	Calculates the Breusch-Pagan test statistic to check for
heteroscedasticity. [BP79]


	Parameters

	
	regregression object
	output instance from a regression model



	zarray
	optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.







	Returns

	
	bp_resultdictionary
	contains the statistic (bp) for the test and the
associated p-value (p-value)



	bpfloat
	scalar value for the Breusch-Pagan test statistic



	dfinteger
	degrees of freedom associated with the test (k)



	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with k df)









Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"), "r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the Breusch-Pagan test for heteroscedasticity.

>>> testresult = diagnostics.breusch_pagan(reg)





Print the degrees of freedom for the test.

>>> testresult['df']
2





Print the test statistic.

>>> print("%1.3f"%testresult['bp'])
7.900





Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0193
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spreg.diagnostics.white


	
spreg.diagnostics.white(reg)

	Calculates the White test to check for heteroscedasticity. [Whi80]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	white_resultdictionary
	contains the statistic (white), degrees of freedom
(df) and the associated p-value (pvalue) for the
White test.



	whitefloat
	scalar value for the White test statistic.



	dfinteger
	degrees of freedom associated with the test



	pvaluefloat
	p-value associated with the statistic (chi^2
distributed with k df)









Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the White test for heteroscedasticity.

>>> testresult = diagnostics.white(reg)





Print the degrees of freedom for the test.

>>> print testresult['df']
5





Print the test statistic.

>>> print("%1.3f"%testresult['wh'])
19.946





Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0013
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spreg.diagnostics.koenker_bassett


	
spreg.diagnostics.koenker_bassett(reg, z=None)

	Calculates the Koenker-Bassett test statistic to check for
heteroscedasticity. [KBJ82][Gre03]


	Parameters

	
	regregression output
	output from an instance of a regression class



	zarray
	optional input for specifying an alternative set of
variables (Z) to explain the observed variance. By
default this is a matrix of the squared explanatory
variables (X**2) with a constant added to the first
column if not already present. In the default case,
the explanatory variables are squared to eliminate
negative values.







	Returns

	
	kb_resultdictionary
	contains the statistic (kb), degrees of freedom (df)
and the associated p-value (pvalue) for the test.



	kbfloat
	scalar value for the Koenker-Bassett test statistic.



	dfinteger
	degrees of freedom associated with the test



	pvaluefloat
	p-value associated with the statistic (chi^2
distributed)









Notes

x attribute in the reg object must have a constant term included. This is
standard for spreg.OLS so no testing done to confirm constant.

Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the Koenker-Bassett test for heteroscedasticity.

>>> testresult = diagnostics.koenker_bassett(reg)





Print the degrees of freedom for the test.

>>> testresult['df']
2





Print the test statistic.

>>> print("%1.3f"%testresult['kb'])
5.694





Print the associated p-value.

>>> print("%1.4f"%testresult['pvalue'])
0.0580
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spreg.diagnostics.vif


	
spreg.diagnostics.vif(reg)

	Calculates the variance inflation factor for each independent variable.
For the ease of indexing the results, the constant is currently
included. This should be omitted when reporting the results to the
output text. [Gre03]


	Parameters

	
	regregression object
	output instance from a regression model







	Returns

	
	vif_resultlist of tuples
	each tuple includes the vif and the tolerance, the
order of the variables corresponds to their order in
the reg.x matrix









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import diagnostics
>>> from ols import OLS





Read the DBF associated with the Columbus data.

>>> db = libpysal.io.open(examples.get_path("columbus.dbf"),"r")





Create the dependent variable vector.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Create the matrix of independent variables.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X.append(db.by_col("HOVAL"))
>>> X = np.array(X).T





Run an OLS regression.

>>> reg = OLS(y,X)





Calculate the variance inflation factor (VIF). 
>>> testresult = diagnostics.vif(reg)

Select the tuple for the income variable.

>>> incvif = testresult[1]





Print the VIF for income.

>>> print("%12.12f"%incvif[0])
1.333117497189





Print the tolerance for income.

>>> print("%12.12f"%incvif[1])
0.750121427487





Repeat for the home value variable.

>>> hovalvif = testresult[2]
>>> print("%12.12f"%hovalvif[0])
1.333117497189
>>> print("%12.12f"%hovalvif[1])
0.750121427487













          

      

      

    

  

  
    
    spreg.diagnostics.likratiotest
    

    

    
 
  

    
      
          
            
  
spreg.diagnostics.likratiotest


	
spreg.diagnostics.likratiotest(reg0, reg1)

	Likelihood ratio test statistic [Gre03]


	Parameters

	
	reg0regression object
	for constrained model (H0)



	reg1regression object
	for unconstrained model (H1)







	Returns

	
	likratiodictionary
	contains the statistic (likr), the degrees of
freedom (df) and the p-value (pvalue)



	likrfloat
	likelihood ratio statistic



	dfinteger
	degrees of freedom



	p-valuefloat
	p-value









Examples

>>> import numpy as np
>>> import libpysal
>>> from libpysal import examples
>>> import scipy.stats as stats
>>> import spreg.ml_lag as lag





Use the baltim sample data set

>>> db = libpysal.io.open(examples.get_path("baltim.dbf"),'r')
>>> y_name = "PRICE"
>>> y = np.array(db.by_col(y_name)).T
>>> y.shape = (len(y),1)
>>> x_names = ["NROOM","NBATH","PATIO","FIREPL","AC","GAR","AGE","LOTSZ","SQFT"]
>>> x = np.array([db.by_col(var) for var in x_names]).T
>>> ww = ps.open(ps.examples.get_path("baltim_q.gal"))
>>> w = ww.read()
>>> ww.close()
>>> w.transform = 'r'





OLS regression

>>> ols1 = ps.spreg.OLS(y,x)





ML Lag regression

>>> mllag1 = lag.ML_Lag(y,x,w)





>>> lr = likratiotest(ols1,mllag1)





>>> print "Likelihood Ratio Test: {0:.4f}       df: {1}        p-value: {2:.4f}".format(lr["likr"],lr["df"],lr["p-value"])
Likelihood Ratio Test: 44.5721       df: 1        p-value: 0.0000
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spreg.diagnostics_sp.LMtests


	
class spreg.diagnostics_sp.LMtests(ols, w, tests=['all'])

	Lagrange Multiplier tests. Implemented as presented in [ABFY96]


	Parameters

	
	lmetuple
	(Only if ‘lme’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM error test.



	lmltuple
	(Only if ‘lml’ or ‘all’ was in tests). Pair of statistic and
p-value for the LM lag test.



	rlmetuple
	(Only if ‘rlme’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM error test.



	rlmltuple
	(Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the Robust LM lag test.



	sarmatuple
	(Only if ‘rlml’ or ‘all’ was in tests). Pair of statistic
and p-value for the SARMA test.









Examples

>>> import numpy as np
>>> import libpysal
>>> from ols import OLS





Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T





Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()





Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'





Run an OLS regression

>>> ols = OLS(y, x)





Run all the LM tests in the residuals. These diagnostics test for the
presence of remaining spatial autocorrelation in the residuals of an OLS
model and give indication about the type of spatial model. There are five
types: presence of a spatial lag model (simple and robust version),
presence of a spatial error model (simple and robust version) and joint presence
of both a spatial lag as well as a spatial error model.

>>> lms = spreg.diagnostics_sp.LMtests(ols, w)





LM error test:

>>> print round(lms.lme[0],4), round(lms.lme[1],4)
3.0971 0.0784





LM lag test:

>>> print round(lms.lml[0],4), round(lms.lml[1],4)
0.9816 0.3218





Robust LM error test:

>>> print round(lms.rlme[0],4), round(lms.rlme[1],4)
3.2092 0.0732





Robust LM lag test:

>>> print round(lms.rlml[0],4), round(lms.rlml[1],4)
1.0936 0.2957





LM SARMA test:

>>> print round(lms.sarma[0],4), round(lms.sarma[1],4)
4.1907 0.123






	Attributes

	
	olsOLS
	OLS regression object



	wW
	Spatial weights instance



	testslist
	Lists of strings with the tests desired to be performed.
Values may be:


	‘all’: runs all the options (default)


	‘lme’: LM error test


	‘rlme’: Robust LM error test


	‘lml’ : LM lag test


	‘rlml’: Robust LM lag test













	
__init__(self, ols, w, tests=['all'])

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, ols, w[, tests])

	Initialize self.
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spreg.diagnostics_sp.MoranRes


	
class spreg.diagnostics_sp.MoranRes(ols, w, z=False)

	Moran’s I for spatial autocorrelation in residuals from OLS regression


	Parameters

	
	olsOLS
	OLS regression object



	wW
	Spatial weights instance



	zboolean
	If set to True computes attributes eI, vI and zI. Due to computational burden of vI, defaults to False.









Examples

>>> import numpy as np
>>> import libpysal
>>> from ols import OLS





Open the csv file to access the data for analysis

>>> csv = libpysal.io.open(libpysal.examples.get_path('columbus.dbf'),'r')





Pull out from the csv the files we need (‘HOVAL’ as dependent as well as
‘INC’ and ‘CRIME’ as independent) and directly transform them into nx1 and
nx2 arrays, respectively

>>> y = np.array([csv.by_col('HOVAL')]).T
>>> x = np.array([csv.by_col('INC'), csv.by_col('CRIME')]).T





Create the weights object from existing .gal file

>>> w = libpysal.io.open(libpysal.examples.get_path('columbus.gal'), 'r').read()





Row-standardize the weight object (not required although desirable in some
cases)

>>> w.transform='r'





Run an OLS regression

>>> ols = OLS(y, x)





Run Moran’s I test for residual spatial autocorrelation in an OLS model.
This computes the traditional statistic applying a correction in the
expectation and variance to account for the fact it comes from residuals
instead of an independent variable

>>> m = spreg.diagnostics_sp.MoranRes(ols, w, z=True)





Value of the Moran’s I statistic:

>>> print round(m.I,4)
0.1713





Value of the Moran’s I expectation:

>>> print round(m.eI,4)
-0.0345





Value of the Moran’s I variance:

>>> print round(m.vI,4)
0.0081





Value of the Moran’s I standardized value. This is
distributed as a standard Normal(0, 1)

>>> print round(m.zI,4)
2.2827





P-value of the standardized Moran’s I value (z):

>>> print round(m.p_norm,4)
0.0224






	Attributes

	
	Ifloat
	Moran’s I statistic



	eIfloat
	Moran’s I expectation



	vIfloat
	Moran’s I variance



	zIfloat
	Moran’s I standardized value










	
__init__(self, ols, w, z=False)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, ols, w[, z])

	Initialize self.
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spreg.diagnostics_sp.AKtest


	
class spreg.diagnostics_sp.AKtest(iv, w, case='nosp')

	Moran’s I test of spatial autocorrelation for IV estimation.
Implemented following the original reference [AK97]


	Parameters

	
	ivTSLS
	Regression object from TSLS class



	wW
	Spatial weights instance



	casestring
	Flag for special cases (default to ‘nosp’):


	‘nosp’: Only NO spatial end. reg.


	‘gen’: General case (spatial lag + end. reg.)












Examples

We first need to import the needed modules. Numpy is needed to convert the
data we read into arrays that spreg understands and pysal to
perform all the analysis. The TSLS is required to run the model on
which we will perform the tests.

>>> import numpy as np
>>> import libpysal
>>> from twosls import TSLS
>>> from twosls_sp import GM_Lag





Open data on Columbus neighborhood crime (49 areas) using libpysal.io.open().
This is the DBF associated with the Columbus shapefile.  Note that
libpysal.io.open() also reads data in CSV format; since the actual class
requires data to be passed in as numpy arrays, the user can read their
data in using any method.

>>> db = libpysal.io.open(libpysal.examples.get_path("columbus.dbf"),'r')





Before being able to apply the diagnostics, we have to run a model and,
for that, we need the input variables. Extract the CRIME column (crime
rates) from the DBF file and make it the dependent variable for the
regression. Note that PySAL requires this to be an numpy array of shape
(n, 1) as opposed to the also common shape of (n, ) that other packages
accept.

>>> y = np.array(db.by_col("CRIME"))
>>> y = np.reshape(y, (49,1))





Extract INC (income) vector from the DBF to be used as
independent variables in the regression.  Note that PySAL requires this to
be an nxj numpy array, where j is the number of independent variables (not
including a constant). By default this model adds a vector of ones to the
independent variables passed in, but this can be overridden by passing
constant=False.

>>> X = []
>>> X.append(db.by_col("INC"))
>>> X = np.array(X).T





In this case, we consider HOVAL (home value) as an endogenous regressor,
so we acknowledge that by reading it in a different category.

>>> yd = []
>>> yd.append(db.by_col("HOVAL"))
>>> yd = np.array(yd).T





In order to properly account for the endogeneity, we have to pass in the
instruments. Let us consider DISCBD (distance to the CBD) is a good one:

>>> q = []
>>> q.append(db.by_col("DISCBD"))
>>> q = np.array(q).T





Now we are good to run the model. It is an easy one line task.

>>> reg = TSLS(y, X, yd, q=q)





Now we are concerned with whether our non-spatial model presents spatial
autocorrelation in the residuals. To assess this possibility, we can run
the Anselin-Kelejian test, which is a version of the classical LM error
test adapted for the case of residuals from an instrumental variables (IV)
regression. First we need an extra object, the weights matrix, which
includes the spatial configuration of the observations
into the error component of the model. To do that, we can open an already
existing gal file or create a new one. In this case, we will create one
from columbus.shp.

>>> w = libpysal.weights.Rook.from_shapefile(libpysal.examples.get_path("columbus.shp"))





Unless there is a good reason not to do it, the weights have to be
row-standardized so every row of the matrix sums to one. Among other
things, this allows to interpret the spatial lag of a variable as the
average value of the neighboring observations. In PySAL, this can be
easily performed in the following way:

>>> w.transform = 'r'





We are good to run the test. It is a very simple task:

>>> ak = AKtest(reg, w)





And explore the information obtained:

>>> print('AK test: %f      P-value: %f'%(ak.ak, ak.p))
AK test: 4.642895      P-value: 0.031182





The test also accomodates the case when the residuals come from an IV
regression that includes a spatial lag of the dependent variable. The only
requirement needed is to modify the case parameter when we call
AKtest. First, let us run a spatial lag model:

>>> reg_lag = GM_Lag(y, X, yd, q=q, w=w)





And now we can run the AK test and obtain similar information as in the
non-spatial model.

>>> ak_sp = AKtest(reg, w, case='gen')
>>> print('AK test: %f      P-value: %f'%(ak_sp.ak, ak_sp.p))
AK test: 1.157593      P-value: 0.281965






	Attributes

	
	mifloat
	Moran’s I statistic for IV residuals



	akfloat
	Square of corrected Moran’s I for residuals
\(ak = \dfrac{N  imes I^*}{\phi^2}\).
Note: if case=’nosp’ then it simplifies to the LMerror



	pfloat
	P-value of the test










	
__init__(self, iv, w, case='nosp')

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(self, iv, w[, case])

	Initialize self.
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spreg.diagnostics_sur.sur_setp


	
spreg.diagnostics_sur.sur_setp(bigB, varb)

	Utility to compute standard error, t and p-value


	Parameters

	
	bigBdictionary
	of regression coefficient estimates,
one vector by equation



	varbarray
	variance-covariance matrix of coefficients







	Returns

	
	surinfdictdictionary
	with standard error, t-value, and
p-value array, one for each equation
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spreg.diagnostics_sur.sur_lrtest


	
spreg.diagnostics_sur.sur_lrtest(n, n_eq, ldetS0, ldetS1)

	Likelihood Ratio test on off-diagonal elements of Sigma


	Parameters

	
	nint
	cross-sectional dimension (number of observations for an equation)



	n_eqint
	number of equations



	ldetS0float
	log determinant of Sigma for OLS case



	ldetS1float
	log determinant of Sigma for SUR case (should be iterated)







	Returns

	
	(lrtest,M,pvalue)tuple
	with value of test statistic (lrtest),
degrees of freedom (M, as an integer)
p-value
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spreg.diagnostics_sur.sur_lmtest(n, n_eq, sig)

	Lagrange Multiplier test on off-diagonal elements of Sigma


	Parameters

	
	nint
	cross-sectional dimension (number of observations for an equation)



	n_eqint
	number of equations



	sigarray
	inter-equation covariance matrix for null model (OLS)







	Returns

	
	(lmtest,M,pvalue)tuple
	with value of test statistic (lmtest),
degrees of freedom (M, as an integer)
p-value
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spreg.diagnostics_sur.lam_setp(lam, vm)

	Standard errors, t-test and p-value for lambda in SUR Error ML


	Parameters

	
	lamarray
	n_eq x 1 array with ML estimates for spatial error
autoregressive coefficient



	vmarray
	n_eq x n_eq subset of variance-covariance matrix for
lambda and Sigma in SUR Error ML
(needs to be subset from full vm)







	Returns

	
	: tuple
	with arrays for standard error, t-value and p-value
(each element in the tuple is an n_eq x 1 array)
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spreg.diagnostics_sur.surLMe(n_eq, WS, bigE, sig)

	Lagrange Multiplier test on error spatial autocorrelation in SUR


	Parameters

	
	n_eqint
	number of equations



	WSarray
	spatial weights matrix in sparse form



	bigEarray
	n x n_eq matrix of residuals by equation



	sigarray
	cross-equation error covariance matrix







	Returns

	
	(LMe,n_eq,pvalue)tuple
	with value of statistic (LMe), degrees
of freedom (n_eq) and p-value
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spreg.diagnostics_sur.surLMlag(n_eq, WS, bigy, bigX, bigE, bigYP, sig, varb)

	Lagrange Multiplier test on lag spatial autocorrelation in SUR


	Parameters

	
	n_eqint
	number of equations



	WSspatial weights matrix in sparse form
	

	bigydictionary
	with y values



	bigXdictionary
	with X values



	bigEarray
	n x n_eq matrix of residuals by equation



	bigYParray
	n x n_eq matrix of predicted values by equation



	sigarray
	cross-equation error covariance matrix



	varbarray
	variance-covariance matrix for b coefficients (inverse of Ibb)







	Returns

	
	(LMlag,n_eq,pvalue)tuple
	with value of statistic (LMlag), degrees
of freedom (n_eq) and p-value
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